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Background. The Infectious Diseases Society of America is committed to providing up-to-date guidance on the treatment of 
antimicrobial-resistant infections. This guidance document focuses on infections caused by extended-spectrum β-lactamase–producing 
Enterobacterales, AmpC β-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa with 
difficult-to-treat resistance, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia. This updated document 
replaces previous versions of the guidance document. 

Methods. A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated 
questions about the treatment of infections caused by extended-spectrum β-lactamase-producing Enterobacterales, AmpC 
β-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa with difficult-to- 
treat resistance, carbapenem-resistant Acinetobacter baumannii, and S. maltophilia. Because of differences in the 
epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment 
of infections in the United States. 

Results. Preferred and alternative suggested treatment approaches are provided with accompanying rationales, assuming the 
causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, 
transitioning to oral therapy, duration of therapy, and other management considerations are also discussed briefly. Suggested 
approaches apply for both adult and pediatric populations, although suggested antibiotic dosages are provided only for adults. 

Conclusions. The field of antimicrobial-resistance is highly dynamic. Consultation with an infectious diseases specialist is 
recommended for the treatment of antimicrobial resistant infections. This document is current as of 31 December 2022 and 
will be updated periodically. The most current version of this document, including date of publication, is available at www. 
idsociety.org/practice-guideline/amr-guidance/. 
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INTRODUCTION 

Antimicrobial resistance (AMR) is a global crisis. Internationally, 
approximately 1.3 million deaths were estimated to be directly 
attributable to antimicrobial-resistant bacterial pathogens in 
2019 [1]. In the United States, antimicrobial-resistant patho-
gens caused more than 2.8 million infections and more than 
35 000 deaths annually from 2012 through 2017, according to 
the Centers for Disease Control and Prevention (CDC) 
Antibiotic Resistance Threats in the United States Report [2]. 

The Infectious Diseases Society of America (IDSA) identified 
the development and dissemination of clinical practice guide-
lines and other guidance documents as a top initiative in its 
2019 Strategic Plan [3]. IDSA acknowledged that the ability 
to address rapidly evolving topics such as AMR was limited 
by prolonged timelines needed to generate new or updated clin-
ical practice guidelines, which are based on systematic literature 
reviews and employ GRADE (Grading of Recommendations 
Assessment, Development, and Evaluation) methodology. 
Additionally, when clinical trial data and other robust studies 
are limited or not available, the development of clinical practice 
guidelines is challenging. As an alternative to practice guidelines, 
IDSA endorsed developing more narrowly focused guidance 
documents for the treatment of infections where data continue 
to rapidly evolve. Guidance documents are prepared by a small 
team of experts, who answer questions about treatment based 
on a comprehensive (but not necessarily systematic) review of 
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the literature, clinical experience, and expert opinion. 
Documents do not include formal grading of evidence and are 
made available online and updated annually. 

In the present document, guidance is provided on the 
treatment of infections caused by extended-spectrum β-lactamase- 
producing Enterobacterales (ESBL-E), AmpC β-lactamase- 
producing Enterobacterales (AmpC-E), carbapenem-resistant 
Enterobacterales (CRE), Pseudomonas aeruginosa with difficult- 
to-treat resistance (DTR-P. aeruginosa), carbapenem-resistant 
Acinetobacter baumannii species (CRAB), and Stenotrophomonas 
maltophilia. Many of these pathogens have been designated 
urgent or serious threats by the CDC [2]. Each pathogen causes 
a wide range of infections that are encountered in United States 
hospitals of all sizes, and that carry with them significant 
morbidity and mortality. 

Guidance is presented in the form of answers to a series of 
clinical questions for each pathogen. Although brief descrip-
tions of notable clinical trials, resistance mechanisms, and 
antimicrobial susceptibility testing (AST) methods are includ-
ed, the document does not provide a comprehensive review 
of these topics. GRADE (Grading of Recommendations 
Assessment, Development, and Evaluation) methodology was 
not used. Because of differences in the molecular epidemiology 
of resistance and availability of specific antibiotics internation-
ally, treatment suggestions are geared toward antimicrobial- 
resistant infections in the United States. The content of this 
document is current as of 31 December 2022. The most current 
version of this IDSA guidance document and corresponding 
date of publication is available at: www.idsociety.org/practice- 
guideline/amr-guidance. 

METHODOLOGY 

IDSA convened a panel of 6 actively practicing infectious diseases 
specialists with clinical and research expertise in the treatment of 
antimicrobial-resistant bacterial infections. Through a series of 
virtual meetings, the panel developed commonly encountered 
treatment questions and corresponding suggested treatment ap-
proaches for each pathogen group. Answers include a brief discus-
sion of the rationale supporting the suggested approaches. This 
guidance document applies to both adult and pediatric popula-
tions. Suggested antibiotic dosing for adults with antimicrobial- 
resistant infections, assuming normal renal and hepatic function, 
are provided in Table 1. Pediatric dosing is not provided. 

INFECTIOUS DISEASES SOCIETY OF AMERICA 

DISCLAIMER 

It is important to realize that guidance cannot always account 
for individual variation among patients. The contents of this 
guidance are assessments of current scientific and clinical in-
formation provided as an educational service. They are not 

continually updated and may not reflect the most recent evidence 
(new evidence may emerge between the time information is de-
veloped and when it is published or read). They should not be 
considered inclusive of all available treatment approaches or as 
a statement of the standard of care and are not intended to sup-
plant clinician judgment with respect to particular patients or 
special clinical situations. Whether and the extent to which to fol-
low guidance is voluntary, with the ultimate determination re-
garding their application to be made by the treating clinician in 
light of each patient’s individual circumstances. Although the 
Infectious Diseases Society of America (IDSA) makes every ef-
fort to present accurate, complete, and reliable information, 
this guidance is presented “as is” without any warranty, either ex-
press or implied. IDSA (and its officers, directors, members, em-
ployees, and agents) assume no responsibility for any loss, 
damage, or claim with respect to any liabilities, including direct, 
special, indirect, or consequential damages, incurred in connec-
tion with this guidance or reliance on the information presented. 

The guidance represents the proprietary and copyrighted 
property of IDSA. Copyright 2023 Infectious Diseases Society 
of America. All rights reserved. No part of this guidance may 
be reproduced, distributed, or transmitted in any form or by 
any means, including photocopying, recording, or other elec-
tronic or mechanical methods, without the prior written per-
mission of IDSA. Permission is granted to physicians and 
health care providers solely to copy and use the guidance in 
their professional practices and clinical decision-making. No li-
cense or permission is granted to any person or entity, and pri-
or written authorization by IDSA is required, to sell, distribute, 
or modify the guidance, or to make derivative works of or 
incorporate the guidance into any product, including but not 
limited to clinical decision support software or any other soft-
ware product. Except for the permission granted above, any 
person or entity desiring to use the guidance in any way must 
contact IDSA for approval in accordance with the terms and 
conditions of third-party use, in particular any use of the guid-
ance in any software product. 

GENERAL MANAGEMENT RECOMMENDATIONS 

Suggested treatment approaches in this guidance document 
assume that the causative organism has been identified and 
that in vitro activity of antibiotics is demonstrated. If 2 antibi-
otics are equally effective, important considerations in select-
ing a specific agent include safety, cost, convenience, and local 
formulary availability. The panel recommends that infectious 
diseases specialists are involved in the management of pa-
tients with infections caused by antimicrobial-resistant gram- 
negative organisms, whenever possible. 

In this document, the term complicated urinary tract infection 
(cUTI) refers to UTIs occurring in association with a structural or 
functional abnormality of the genitourinary tract, or any UTI in an  
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adolescent or adult male. In general, the panel suggests cUTI be 
treated with similar agents and for similar treatment durations 
as pyelonephritis. For cUTIs where the source has been controlled 
(eg, removal of a Foley catheter) and ongoing concerns for urinary 

stasis or indwelling urinary hardware are no longer present, it is 
reasonable to select antibiotic agents and treatment durations sim-
ilar to those that would be selected for uncomplicated cystitis, with 
day 1 of therapy being the day source control occurred. 

Table 1. Suggested Dosing of Antibiotics for the Treatment of Antimicrobial-Resistant Infections in Adults, Assuming Normal Renal and Hepatic 
Functiona,b 

Amikacin Uncomplicated cystitis: 15 mg/kg IV as a single dose 
Pyelonephritis or complicated urinary tract infections: 15 mg/kg IV once; subsequent doses and dosing interval based on 

pharmacokinetic evaluation 
Additional information in Supplementary Material. 

Ampicillin-sulbactam Total daily dose of 6–9 g of sulbactam 
Potential infusion strategies include the following: 
9 g of ampicillin-sulbactam (6 g ampicillin, 3 g sulbactam) IV every 8 h, infused over 4 h 
27 g of ampicillin-sulbactam (18 g ampicillin, 9 g sulbactam) IV as a continuous infusion 
3 g of ampicillin-sulbactam (2 g ampicillin, 1 g sulbactam) IV every 4 h, infused over 30 min 
Additional information in Supplementary Material. 

Cefepime Uncomplicated cystitis: 1 g IV every 8 h, infused over 30 min 
All other infections: 2 g IV every 8 h, infused over 3 h (if possible) 

Cefiderocol 2 g IV every 8 h, infused over 3 h 

Ceftazidime-avibactam 2.5  IV every 8 h, infused over 3 h 

Ceftazidime-avibactam PLUS 
aztreonam 

Ceftazidime-avibactam: 2.5 g IV every 8 h, infused over 3 h 
PLUS 
Aztreonam: 2 g IV every 6–8 h (every 6 h dosing preferred if possible), infused over 3 h 
Additional information in Supplementary Material. 

Ceftolozane-tazobactam Uncomplicated cystitis: 1.5 g IV every 8 h, infused over 1 h 
All other infections: 3 g IV every 8 h, infused over 3 h 

Ciprofloxacin Uncomplicated cystitis: 400 mg IV every 12 h or 500 mg PO every 12 h 
All other infections: 400 mg IV every 8 h OR 750 mg PO every 12 h 

Colistin Refer to international consensus guidelines on polymyxins (Tsuji BT, et al. Pharmacotherapy. 2019; 39:10–39). 

Eravacycline 1 mg/kg per dose IV every 12 h 

Ertapenem 1 g IV every 24 h, infused over 30 min 

Fosfomycin Uncomplicated cystitis: 3 g PO as a single dose 

Gentamicin Uncomplicated cystitis: 5 mg/kg/dose IV as a single dose 
Pyelonephritis or complicated urinary tract infections: 7 mg/kg IV once; subsequent doses and dosing interval based on 

pharmacokinetic evaluation 
Additional information in Supplementary Material. 

Imipenem-cilastatin Uncomplicated cystitis: 500 mg IV every 6 h, infused over 30 min 
All other infections: 500 mg IV every 6 h, infused over 3 h (if possible) 
Additional information in Supplementary Material. 

Imipenem-cilastatin-relebactam 1.25 g IV every 6 h, infused over 30 min 
Additional information in Supplementary Material. 
Uncomplicated cystitis: 500 mg IV/PO every 24 h 

Levofloxacin 750 mg IV/PO every 24 h 

Meropenem Uncomplicated cystitis: 1 g IV every 8 h, infused over 30 min 
All other infections: 2 g IV every 8 h, infused over 3 h (if possible) 
Additional information in Supplementary Material. 

Meropenem-vaborbactam 4 g IV every 8 h, infused over 3 h 

Minocycline 200 mg IV/PO every 12 h 

Nitrofurantoin Macrocrystal/monohydrate (Macrobid): 100 mg PO every 12 h 
Oral suspension: 50 mg PO every 6 h 

Polymyxin B Refer to international consensus guidelines on polymyxins (Tsuji BT, et al. Pharmacotherapy 2019; 39:10–39). 

Tigecycline 200 mg IV as a single dose, then 100 mg IV every 12 h 

Tobramycin Uncomplicated cystitis: 5 mg/kg/dose IV as a single dose 
Pyelonephritis or complicated urinary tract infections: 7 mg/kg IV once; subsequent doses and dosing interval based on 

pharmacokinetic evaluation 
Additional information in Supplementary Material. 

Trimethoprim-sulfamethoxazole Uncomplicated cystitis: 160 mg (trimethoprim component) IV/PO every 12 h 
Other infections: 8–12 mg/kg/d (trimethoprim component) IV/PO divided every 8 to 12 h (consider maximum dose of 

960 mg trimethoprim component per day) 
Additional information in Supplementary Material. 

Abbreviations: IV, intravenous; PO, enterally.  
aDosing suggestions limited to organisms and infectious syndromes discussed in the Infectious Diseases Society of America Antimicrobial Resistance Treatment Guidance document.  
bDosing suggested for several agents in table may differ from dosing recommended by the US Food and Drug Administration.   
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Empiric Therapy 

Empiric treatment decisions are outside the scope of this guid-
ance document. However, in general, empiric therapy should 
be informed by the most likely pathogens, severity of illness 
of the patient, the likely source of the infection, and any addi-
tional patient-specific factors (eg, severe penicillin allergy, se-
vere immune compromise, chronic kidney disease). When 
determining empiric treatment for a given patient, clinicians 
should also consider: (1) previous organisms identified from 
the patient and associated antimicrobial susceptibility testing 
(AST) data in the last 12 months, (2) antibiotic exposure within 
the past 30 days, and (3) local AST patterns for the most likely 
pathogens. Treatment decisions should be refined based on the 
identity and AST profile of the pathogen, as well as based on the 
identification of any prominent β-lactamase genes. 

For Pseudomonas aeruginosa with difficult-to-treat resistance 
(DTR-P. aeruginosa), carbapenem-resistant Acinetobacter 
baumannii (CRAB), and Stenotrophomonas maltophilia, in 
particular, a distinction between bacterial colonization and 
infection is important because unnecessary antibiotic therapy 
will only further the development of resistance and may cause un-
necessary antibiotic-related harm to patients. Commonly selected 
empiric antibiotic regimens are generally not active against CRAB 
and S. maltophilia infections. The decision to target treatment for 
CRAB and/or S. maltophilia in empiric antibiotic regimens should 
involve a careful risk-benefit analysis after reviewing previous 
culture results, clinical presentation, individual host risk 
factors, and antibiotic-specific adverse event profiles. 

Duration of Therapy and Transitioning to Oral Therapy 

Recommendations on durations of therapy are not provided, 
but clinicians are advised that the duration of therapy should 
not differ for infections caused by organisms with resistant 
phenotypes compared with infections caused by more suscep-
tible phenotypes. After AST results are available, it may become 
apparent that inactive antibiotic therapy was initiated empiri-
cally. This may impact the duration of therapy. For example, 
uncomplicated cystitis is typically a mild infection [4]. If an an-
tibiotic not active against the causative organism was adminis-
tered empirically for uncomplicated cystitis, but clinical 
improvement nonetheless occurred, it is generally not neces-
sary to repeat a urine culture, change the antibiotic regimen, 
or extend the planned treatment course. However, for all other 
infections, if AST results indicate a potentially inactive agent 
was initiated empirically, a change to an active regimen for a 
full treatment course (dated from the start of active therapy) 
is suggested. Additionally, important host factors related to im-
mune status, ability to attain source control, and general re-
sponse to therapy should be considered when determining 
treatment durations for antimicrobial-resistant infections, as 
with the treatment of any bacterial infection. Finally, whenever 
possible, transitioning to oral therapy should be considered, 

particularly if the following criteria are met: (1) susceptibility 
to an appropriate oral agent is demonstrated, (2) the patient 
is hemodynamically stable, (3) reasonable source control mea-
sures have occurred, and (4) concerns about insufficient intes-
tinal absorption are not present [5]. 

SECTION 1: EXTENDED-SPECTRUM  
β-LACTAMASE–PRODUCING ENTEROBACTERALES 

The incidence of extended-spectrum β-lactamase–producing 
Enterobacterales (ESBL-E) identified in bacterial cultures in 
the United States increased by 53% from 2012 to 2017, in large 
part because of a greater number of community-acquired in-
fections [6, 7]. ESBLs are enzymes that inactivate most peni-
cillins, cephalosporins, and aztreonam. EBSL-E generally 
remain susceptible to carbapenems. ESBLs do not inactivate 
non–β-lactam agents (eg, ciprofloxacin, trimethoprim- 
sulfamethoxazole [TMP-SMX], gentamicin). However, or-
ganisms carrying ESBL genes often harbor additional genes 
or mutations in genes that mediate resistance to a broad range 
of antibiotics. 

Any gram-negative organism has the potential to harbor 
ESBL genes; however, they are most prevalent in Escherichia 
coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mi-
rabilis [8–10]. CTX-M enzymes, particularly CTX-M-15, are 
the most common ESBLs in the United States [10]. ESBLs other 
than CTX-M with unique hydrolyzing abilities are also present, 
including variants of narrow-spectrum TEM and SHV 
β-lactamases with amino acid substitutions, but they have un-
dergone less rigorous clinical investigation than CTX-M en-
zymes [11–14]. Routine EBSL testing is not performed by 
most clinical microbiology laboratories [15, 16]. Rather, non-
susceptibility to ceftriaxone (ie, ceftriaxone minimum inhibito-
ry concentrations [MICs] ≥ 2 µg/mL), is often used as a proxy 
for ESBL production, although this threshold has limitations 
with specificity as organisms not susceptible to ceftriaxone 
for reasons other than ESBL production may be falsely 
presumed to be ESBL producers [17, 18]. For this guidance 
document, ESBL-E will refer to presumed or confirmed 
ESBL-producing E. coli, K. pneumoniae, K. oxytoca, or P. mirabilis. 
Treatment suggestions for ESBL-E infections assume that in vitro 
activity of preferred and alternative antibiotics has been 
demonstrated. 

Question 1.1: What Are Preferred Antibiotics for the Treatment of 
Uncomplicated Cystitis Caused by ESBL-E? 

Suggested Approach 
Nitrofurantoin and TMP-SMX are preferred treatment options 
for uncomplicated cystitis caused by ESBL-E. Ciprofloxacin, 
levofloxacin, and carbapenems are alternative agents for un-
complicated cystitis caused by ESBL-E. Although effective, 
their use is discouraged when nitrofurantoin or TMP-SMX 
are active. Single-dose aminoglycosides and oral fosfomycin  
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(for E. coli only) are also alternative treatments for uncompli-
cated cystitis caused by ESBL-E. 

Rationale 
Nitrofurantoin and TMP-SMX have been shown to be safe and 
effective options for uncomplicated cystitis, including uncom-
plicated ESBL-E cystitis [4, 19, 20]. Although carbapenems and 
the fluoroquinolones ciprofloxacin or levofloxacin are effective 
agents against ESBL-E cystitis [21, 22], their use for uncompli-
cated cystitis is discouraged when other safe and effective op-
tions are available. Limiting use of these agents preserves 
their activity for future infections when treatment options 
may be more restricted. Moreover, limiting their use reduces 
the risk of associated toxicities, particularly with the fluoro-
quinolones, which have been associated with an increased 
risk for prolonged QTc intervals, tendinitis and tendon rup-
ture, aortic dissections, seizures, peripheral neuropathy, and 
Clostridioides difficile infections [23–26]. 

Treatment with a single intravenous (IV) dose of an amino-
glycoside is an alternative treatment option for uncomplicated 
ESBL-E cystitis. Aminoglycosides are nearly exclusively elimi-
nated by the renal route. A single IV dose is generally effective 
for uncomplicated cystitis, with minimal toxicity, but robust 
clinical trial data are lacking [27]. Oral fosfomycin is an alter-
native treatment option exclusively for uncomplicated 
ESBL-E cystitis caused by E. coli. Fosfomycin is not suggested 
for the treatment of infections caused by K. pneumoniae and 
several other gram-negative organisms that frequently carry 
fosA hydrolase genes that may lead to clinical failure [28, 29]. 
A randomized, open-label trial indicated that a single dose of 
oral fosfomycin is associated with higher clinical failure than 
a 5-day course of nitrofurantoin for uncomplicated cystitis 
[19]. Although this trial was not limited to E. coli cystitis, in a 
subgroup analysis exclusively of E. coli infections, outcomes re-
mained poor in the fosfomycin group with day 14 clinical fail-
ure at 50% in the fosfomycin group versus 22% in the 
nitrofurantoin group [19]. The additive benefit of a second 
dose of oral fosfomycin for uncomplicated cystitis is not 
known. 

The panel does not suggest prescribing amoxicillin- 
clavulanic acid or doxycycline for the treatment of ESBL-E cys-
titis. A randomized clinical trial compared a 3-day regimen of 
amoxicillin-clavulanic acid with a 3-day course of ciprofloxacin 
for 370 women with uncomplicated E. coli cystitis [21]. Clinical 
cure was observed in 58% and 77% of the women randomized 
to the amoxicillin-clavulanic acid and ciprofloxacin arms, re-
spectively. The higher failure rates with amoxicillin-clavulanic 
acid appear associated with persistent vaginal bacterial coloni-
zation, which occurred in 45% and 10% of patients in the 
amoxicillin-clavulanic acid and ciprofloxacin arms, respectively 
[21]. The proportion of women in the trial infected with 
ESBL-E strains is not available. Even though data indicate that 

clavulanic acid may be effective against ESBLs in vitro [30, 31], 
this may not translate to clinical efficacy [32]. Robust data indicat-
ing that oral amoxicillin-clavulanic acid is effective for uncompli-
cated ESBL-E UTI are lacking. 

Two clinical outcomes studies, published more than 40 years 
ago, demonstrated that oral tetracyclines may be effective for 
the treatment of UTIs [33, 34]. Both of these studies, however, 
primarily focused on P. aeruginosa, an organism not suscepti-
ble to oral tetracyclines, questioning the impact that antibiotic 
therapy had on clinical cure. Doxycycline is primarily eliminat-
ed through the intestinal tract [35]. Its urinary excretion is lim-
ited. Until more convincing data demonstrating the clinical 
effectiveness of oral doxycycline for the treatment of ESBL-E 
cystitis are available, the panel suggests against use of doxycy-
cline for this indication. The roles of piperacillin-tazobactam, 
cefepime, and the cephamycins for the treatment of uncompli-
cated cystitis are discussed in Question 1.4, Question 1.5, and 
Question 1.6, respectively. 

Question 1.2: What Are Preferred Antibiotics for the Treatment of 
Pyelonephritis and cUTI Caused by ESBL-E? 

Suggested Approach 
TMP-SMX, ciprofloxacin, or levofloxacin are preferred treat-
ment options for pyelonephritis and cUTIs caused by 
ESBL-E. Ertapenem, meropenem, and imipenem-cilastatin 
are preferred agents when resistance or toxicities preclude the 
use of TMP-SMX or fluoroquinolones. Aminoglycosides for a 
full treatment course are an alternative option for the treatment 
of ESBL-E pyelonephritis or cUTI. 

Rationale 
TMP-SMX, ciprofloxacin, and levofloxacin are preferred treat-
ment options for patients with ESBL-E pyelonephritis and 
cUTIs based on the ability of these agents to achieve adequate 
and sustained concentrations in the urine, clinical trial results, 
and clinical experience [36–38]. Carbapenems are also pre-
ferred agents, when resistance or toxicities prevent the use of 
TMP-SMX or fluoroquinolones, or early in the treatment 
course if a patient is critically ill (Question 1.3). If a carbape-
nem is initiated and susceptibility to TMP-SMX, ciprofloxacin, 
or levofloxacin is demonstrated, transitioning to oral formula-
tions of these agents is preferred over completing a treatment 
course with a carbapenem. Limiting use of carbapenem expo-
sure will preserve their activity for future antimicrobial resis-
tant infections. 

In patients in whom the potential for nephrotoxicity is 
deemed acceptable, aminoglycosides (dosed based on thera-
peutic drug monitoring results) for a full treatment course 
are an alternative option for the treatment of ESBL-E pyelone-
phritis or cUTI [39, 40] (Table 1, Supplementary Material). 
Once-daily plazomicin was noninferior to meropenem in a 
clinical trial that included patients with pyelonephritis and  
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cUTIs caused by Enterobacterales [41]. Individual aminoglyco-
sides are equally effective if susceptibility is demonstrated. Of 
note, in January 2023, the Clinical Laboratory and Standards 
Institute (CLSI) revised the aminoglycoside breakpoints [16] 
(Table 2). 

Fosfomycin is not suggested for the treatment of pyelonephri-
tis or cUTI given its limited renal parenchymal concentrations. 
However, more data are needed to evaluate the role of oral fosfo-
mycin as an oral step-down agent for patients with pyelonephritis 
or cUTI, particularly when administered as a multidose regimen 
and after several days of preferred therapy. A clinical trial of 97 
women with E. coli pyelonephritis (approximately half of patients 
had associated bacteremia) who received up to 5 days of IV ther-
apy and were subsequently transitioned to either once-daily 3-g 
doses of oral fosfomycin or twice daily 500-mg doses of oral 

ciprofloxacin for 10 days of total antibiotic therapy identified sim-
ilar clinical cure percentages in both groups (75% vs 65%, respec-
tively) [42]. However, only approximately 6% of isolates were 
ESBL-producing, limiting generalizability to pyelonephritis 
caused by more drug-resistant phenotypes [42]. Moreover, as 
7 days is generally considered sufficient for the treatment of py-
elonephritis, the association of the additional days of oral fosfo-
mycin or ciprofloxacin with patient outcomes is unclear. 

Fosfomycin is an alternative option for the treatment of 
prostatitis caused by ESBL-producing E. coli when preferred 
options (ie, carbapenems, TMP-SMX, or fluoroquinolones) 
cannot be tolerated or do not test susceptible [43–48]. In an 
observational study, fosfomycin, dosed at 3 g orally daily for 
1 week, followed by 3 g orally every 48 hours for 6 to 12 weeks, 
was associated with clinical cure in 36 (82%) of 44 males with 

Table 2. 2023 Clinical and Laboratory Standards Institute Susceptibility Interpretive Criteria for Select Gram-Negative Organisms and Select Antibiotic 
Combinations as Suggested in the IDSA AMR Guidance Documenta 

Antibiotic 
Enterobacterales  

(µg/mL) 
Pseudomonas aeruginosa 

(µg/mL) 
Carbapenem-resistant acinetobacter 

baumannii (µg/mL) 
Stenotrophomonas maltophilia 

(µg/mL)  

Amikacin ≤4 ≤16b — — 

Ampicillin-sulbactam — — ≤8/4 — 

Aztreonam ≤4 ≤8 — — 

Cefepime ≤2c ≤8 — — 

Cefiderocol ≤4 ≤4 ≤4 ≤1 

Ceftazidime ≤4 ≤8 — — 

Ceftazidime-avibactam ≤8/4 ≤8/4 — — 

Ceftolozane-tazobactam ≤2/4 ≤4/4 — — 

Ciprofloxacin ≤0.25 ≤0.5 — — 

Colistin or Polymyxin B –d –d –d — 

Doxycycline ≤4 — — — 

Ertapenem ≤0.5 — — — 

Fosfomycin ≤64e — — — 

Gentamicin ≤2 — — — 

Imipenem ≤1 ≤2 — — 

Imipenem-relebactam ≤1/4 ≤2/4 — — 

Levofloxacin ≤0.5 ≤1 — ≤2 

Meropenem ≤1 ≤2 — — 

Meropenem-vaborbactam ≤4/8 — — — 

Minocycline ≤4 — ≤4 ≤4 

Nitrofurantoin ≤32 — — — 

Piperacillin-tazobactam ≤8/4f ≤16/4 — — 

Plazomicin ≤2 — — — 

Tigecycline –g — –h –h 

Trimethoprim-sulfamethoxazole ≤2/38 — — ≤2/38 

Tobramycin ≤2 ≤1 — — 

Abbreviations: AMR, Antimicrobial Resistance; CLSI, Clinical Laboratory and Standards Institute; FDA, Food and Drug Administration; IDSA, Infectious Diseases Society of America; MIC, 
minimum inhibitory concentration.  
aOnly includes antibiotic and organism combinations suggested in the IDSA Guidance document. For full details of antibiotic susceptibility testing interpretations refer to: Clinical and 
Laboratory Standards Institute. 2023. M100: Performance Standards for Antimicrobial Susceptibility Testing. 33 ed. Wayne, PA. CLSI M100 document is updated annually; susceptibility 
criteria subject to changes in 2024.  
bSusceptibility criteria only available for infections originating from the urinary tract.  
cCefepime MICs of 4–8 µg/mL are susceptible dose-dependent.  
dNo susceptible category for colistin or polymyxin B; MICs ≤2 µg/mL considered intermediate.  
eApplies to Escherichia coli urinary tract isolates only.  
fPiperacillin-tazobactam MICs of 16 µg/mL are considered susceptible dose-dependent.  
gNo CLSI breakpoint. FDA defines susceptibility as MICs ≤2 µg/mL.  
hNeither CLSI nor FDA susceptibility criteria are available.   
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chronic bacterial prostatitis [43]. Fosfomycin should be avoid-
ed for prostatitis caused by gram-negative organisms other 
than E. coli (Question 1.1). 

Nitrofurantoin does not achieve adequate concentrations 
in the renal parenchyma and is not advised for the treatment 
of pyelonephritis or cUTI. Doxycycline is also not advised 
for the treatment of ESBL-E pyelonephritis or cUTIs because 
of its limited urinary excretion (Question 1.1) [35]. The 
roles of piperacillin-tazobactam, cefepime, and the cepha-
mycins for the treatment of pyelonephritis and cUTIs are 
discussed in Question 1.4, Question 1.5, and Question 1.6, 
respectively. 

Question 1.3: What Are Preferred Antibiotics for the Treatment of 
Infections Outside of the Urinary Tract Caused by ESBL-E? 

Suggested Approach 
Meropenem, imipenem-cilastatin, or ertapenem are preferred 
for the treatment of infections outside of the urinary tract 
caused by ESBL-E. For patients who are critically ill and/or ex-
periencing hypoalbuminemia, meropenem or imipenem- 
cilastatin are the preferred carbapenems. After appropriate 
clinical response is achieved, transitioning to oral trimethoprim- 
sulfamethoxazole, ciprofloxacin, or levofloxacin should be con-
sidered if susceptibility is demonstrated. 

Rationale 
A carbapenem is recommended as first-line treatment of 
ESBL-E infections outside of the urinary tract, based primarily 
on data from a large clinical trial, as described later [49]. 
Meropenem, imipenem-cilastatin, or ertapenem are preferred 
agents; ertapenem offers a more convenient option for patients 
needing to continue carbapenem therapy in the outpatient 
setting when oral treatment options are not available. For pa-
tients who are critically ill and/or experiencing hypoalbumi-
nemia, meropenem or imipenem-cilastatin are the preferred 
carbapenems. 

Ertapenem, in contrast to meropenem and imipenem, is 
highly protein bound leading to a relatively prolonged serum 
half-life [50]. In patients with hypoalbuminemia and critical ill-
ness, the free fraction of ertapenem increases leading to a signif-
icant decrease in the serum half-life [51–53]. An observational 
study of 279 patients with Enterobacterales infections found 
that hypoalbuminemia (defined as serum albumin <2.5 g/dL) 
was associated with an approximately 5 times higher odds of 
30-day mortality for patients receiving ertapenem compared 
with those receiving meropenem or imipenem-cilastatin [54]. 
Clinical literature regarding the use of ertapenem, relative to 
other carbapenems, in critically ill patients is limited and con-
flicting [53, 55]. However, given known pharmacokinetic (PK) 
alterations in patients with critical illness and some limitations 
in the pharmacokinetic/pharmacodynamic (PK/PD) profile of 
ertapenem [56, 57], the panel suggests the use of meropenem 

or imipenem-cilastatin, rather than ertapenem, as initial thera-
py in critically ill patients with ESBL-E infections. 

The clinical trial that established carbapenem therapy as the 
treatment of choice for ESBL-E bloodstream infections ran-
domized 391 patients with ceftriaxone-nonsusceptible E. coli 
or K. pneumoniae (87% were later confirmed to have ESBL 
genes) bloodstream infections to piperacillin-tazobactam 
4.5 g IV every 6 hours or meropenem 1 g IV every 8 hours, 
both as standard infusions (ie, over 30 minutes). The primary 
outcome of 30-day mortality occurred in 12% and 4% of pa-
tients receiving piperacillin-tazobactam and meropenem, re-
spectively [49]. Trial data were subsequently reanalyzed only 
including patients with clinical isolates against which 
piperacillin-tazobactam MICs were ≤16 µg/mL by broth mi-
crodilution, the reference standard for AST [58]. Reanalyzing 
the data from 320 patients with clinical isolates available for re-
testing, 30-day mortality was observed in 11% versus 4% of those 
in the piperacillin-tazobactam and meropenem arms, respective-
ly. Although the absolute risk difference was attenuated and no 
longer significant in the reanalysis (ie, the 95% confidence inter-
val ranged from −1% to 10%) [58], the panel still suggests carba-
penem therapy as the preferred treatment of ESBL-producing 
bloodstream infections because of the notable direction of the 
risk difference. Comparable clinical trial data are not available 
for ESBL-E infections of other body sites. Nevertheless, the panel 
suggests extrapolating evidence for ESBL-E bloodstream infec-
tions to other common sites of infection, namely intra-abdominal 
infections, skin and soft-tissue infections, and pneumonia. 
Similarly, although the trial evaluated meropenem, the panel sug-
gests extending the findings to imipenem-cilastatin and ertape-
nem, with the latter limited to patients with normal serum 
albumin and patients who are not critically ill. 

In January 2022, the CLSI lowered the piperacillin- 
tazobactam breakpoints and piperacillin-tazobactam MICs of 
≤8/4 µg/mL are considered susceptible for Enterobacterales 
(Table 2) [59]. In the clinical trial, 77% and 94% of isolates 
would have been considered susceptible and susceptible dose- 
dependent, respectively, to piperacillin-tazobactam if applying 
the revised piperacillin-tazobactam interpretive criteria, indi-
cating that in the presence of ESBL production, susceptibility 
may not correlate with clinical success [49, 58]. 

Data from observational studies support the use of oral step- 
down therapy for Enterobacterales bloodstream infections, in-
cluding those caused by antimicrobial resistant isolates, after 
appropriate clinical milestones are achieved [60, 61]. Based 
on the known bioavailability and sustained serum concentra-
tions of oral TMP-SMX and fluoroquinolones, these agents 
should be treatment considerations for patients with ESBL-E 
infections if (1) susceptibility to 1 of these agents is demonstrat-
ed, (2) the patient is hemodynamically stable, (3) reasonable 
source control has occurred, and (4) concerns about insuffi-
cient intestinal absorption are not present [5].  
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Clinicians should avoid oral step-down to nitrofurantoin, 
fosfomycin, amoxicillin-clavulanate, doxycycline, or omadacy-
cline for ESBL-E bloodstream infections. Nitrofurantoin and 
fosfomycin achieve poor serum concentrations. Amoxicillin- 
clavulanate and doxycycline achieve unreliable serum 
concentrations. 

Omadacycline is a tetracycline derivative with an oral formu-
lation that has limited in vitro activity against ESBL-E isolates 
and has an unfavorable PK/PD profile for the treatment of 
Enterobacterales infections [62, 63]. Like other tetracyclines, 
omadacycline efficacy is associated with the 24-hour area under 
the curve to MIC ratio (AUC/MIC). An AUC/MIC ratio of ap-
proximately 38 is needed to achieve at least a 1-log kill (a stan-
dard pharmacodynamic target) for E. coli [63]. Standard oral 
omadacycline dosing achieves a 24-hour AUC of approximately 
13 mg × h/L [64], suggesting limited activity of omadacycline 
against Enterobacterales, which have an MIC50 of 0.5 µg/mL 
(ie, AUC/MIC ratio of approximately 26) [65]. The panel does 
not suggest omadacycline for the treatment of ESBL-E infections. 

Question 1.4: Is There a Role for Piperacillin-Tazobactam in the Treatment 
of Infections Caused by ESBL-E? 

Suggested Approach 
If piperacillin-tazobactam was initiated as empiric therapy for 
uncomplicated cystitis caused by an organism later identified 
as an ESBL-E and clinical improvement occurs, no change or ex-
tension of antibiotic therapy is necessary. The panel suggests 
TMP-SMX, ciprofloxacin, levofloxacin, or carbapenems rather 
than piperacillin-tazobactam for the treatment of ESBL-E pyelo-
nephritis and cUTI, with the understanding that some data sug-
gest the risk of clinical failure with piperacillin-tazobactam may 
be low. Piperacillin-tazobactam is not suggested for the treatment 
of infections outside of the urinary tract caused by ESBL-E, even if 
susceptibility to piperacillin-tazobactam is demonstrated. 

Rationale 
Piperacillin-tazobactam often demonstrates in vitro activity against 
ESBL-E [66]. However, there are several concerns regarding tazobac-
tam’s ability to function as an effective β-lactamase inhibitor. First, 
piperacillin-tazobactam MIC testing may be inaccurate and/or poor-
ly reproducible when ESBL enzymes are present, or in the presence 
of other β-lactamase enzymes such as OXA-1, making it unclear if 
an isolate that tests susceptible to this agent is indeed susceptible 
[58, 67–70]. Second, in vitro data indicate that with increased bac-
terial inoculum (eg, abscesses), piperacillin-tazobactam may no lon-
ger be effective against ESBL-E when compared with meropenem; 
however, the clinical implications of these findings are unclear 
[71–73]. Additionally, the effectiveness of tazobactam may be di-
minished by organisms with increased expression of ESBL enzymes 
or by the presence of multiple ESBL or other β-lactamases [74]. 
Finally, there are ESBL enzymes that are inhibitor resistant (ie, 
not inhibited by β-lactamase inhibitors) [75, 76]. 

If piperacillin-tazobactam was initiated as empiric therapy 
for uncomplicated cystitis caused by an organism later identi-
fied as an ESBL-E and clinical improvement occurs, no change 
or extension of antibiotic therapy is necessary because 
uncomplicated cystitis often resolves on its own. At least 3 ob-
servational studies have compared the efficacy of piperacillin- 
tazobactam and carbapenems for the treatment of ESBL-E 
pyelonephritis or cUTI [77–79]. The most robust observational 
study included 186 hospitalized patients from 5 hospitals with 
pyelonephritis or cUTI caused by E. coli, K. pneumoniae, 
K. oxytoca, or P. mirabilis, with confirmation of the presence 
of ESBL genes in all isolates. This study identified no difference 
in the resolution of clinical symptoms or 30-day mortality be-
tween the groups [77]. A randomized, open-label clinical trial 
investigating this question was also conducted [80]. The trial 
included 66 patients with ESBL-producing E. coli pyelonephri-
tis or cUTI (with confirmation of the presence of ESBL genes) 
randomized to either piperacillin-tazobactam 4.5 g IV every 
6 hours or ertapenem 1 g IV every 24 hours. Clinical success 
was similar between both groups at 94% for piperacillin- 
tazobactam and 97% for ertapenem. These studies suggest non-
inferiority between piperacillin-tazobactam and carbapenems 
for pyelonephritis or cUTIs. 

In the subgroup of 231 patients with ESBL-E bloodstream in-
fections from a urinary source in the previously mentioned 
clinical trial comparing the outcomes of patients with E. coli 
or K. pneumoniae bloodstream infections treated with 
piperacillin-tazobactam or meropenem (Question 1.3), higher 
mortality was identified in the piperacillin-tazobactam group 
(7% vs 3%) [49], although it did not attain statistical signifi-
cance. The panel is unable to state that piperacillin-tazobactam 
should be avoided for pyelonephritis or cUTIs. However, given 
concerns with the efficacy of tazobactam as an ESBL inhibitor 
and the clinical trial results, the panel has concerns with the 
use of piperacillin-tazobactam for the treatment of ESBL-E pyelone-
phritis or cUTIs, and prefers carbapenem therapy (or oral 
trimethoprim-sulfamethoxazole, ciprofloxacin, or levofloxacin, 
if susceptible), particularly in the setting of urosepsis (Question 1.2). 

Observational studies have had conflicting results regarding 
the effectiveness of piperacillin-tazobactam for the treatment of 
ESBL-E bloodstream infections [77–92]. A clinical trial of 
ESBL-E bloodstream infections indicated inferior results with 
piperacillin-tazobactam compared with carbapenem therapy 
(Question 1.3) [49]. A second trial investigating the role of 
piperacillin-tazobactam for the treatment of ESBL-E blood-
stream infections is ongoing [93]. 

Question 1.5: Is There a Role for Cefepime in the Treatment of Infections 
Caused by ESBL-E? 

Suggested Approach 
If cefepime was initiated as empiric therapy for uncomplicated 
cystitis caused by an organism later identified as an ESBL-E and  
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clinical improvement occurs, no change or extension of antibi-
otic therapy is necessary. The panel suggests avoiding cefepime 
for the treatment of pyelonephritis and cUTI. Cefepime is also 
not suggested for the treatment of infections outside of the uri-
nary tract caused by ESBL-E, even if susceptibility to cefepime 
is demonstrated. 

Rationale 
ESBLs commonly hydrolyze cefepime [74, 94]. Furthermore, 
even if ESBL-producing isolates test susceptible to cefepime, ce-
fepime MIC testing may be inaccurate and/or poorly reproduc-
ible with commercial AST methods [95]. Clinical trials 
designed to compare the outcomes of patients with ESBL-E 
bloodstream infections treated with cefepime or carbapenem 
have not been conducted. 

If cefepime was initiated as empiric therapy for uncomplicated 
cystitis caused by an organism later identified as an ESBL-E and 
clinical improvement occurs, no change or extension of antibiot-
ic therapy is necessary, as uncomplicated cystitis often resolves 
on its own. Limited data are available evaluating the role of cefe-
pime versus carbapenems for ESBL-E pyelonephritis and cUTIs 
[80, 96]. A clinical trial evaluating the treatment of molecularly 
confirmed ESBL-E pyelonephritis and cUTI was terminated ear-
ly because of a high clinical failure signal with cefepime (2 g IV 
every 12 hours), despite all isolates having cefepime MICs of 1 to 
2 µg/mL [80]. It is unknown if results would have been more fa-
vorable with every 8-hour cefepime dosing. Until larger, more 
robust comparative effectiveness studies are available to inform 
the role of cefepime, the panel suggests avoiding cefepime for 
the treatment of ESBL-E pyelonephritis or cUTI. 

Observational studies and a subgroup analysis of 23 patients 
in a clinical trial that compared cefepime and carbapenems for 
the treatment of invasive ESBL-E infections demonstrated ei-
ther no difference in outcomes or poorer outcomes with cefe-
pime [97–101]. For these reasons, the panel suggests avoiding 
cefepime for the treatment of invasive ESBL-E infections. 

Question 1.6: Is There a Role for the Cephamycins in the Treatment of 
Infections Caused by ESBL-E? 

Suggested Approach 
Cephamycins are not suggested for the treatment of ESBL-E in-
fections until more clinical outcomes data using cefoxitin or ce-
fotetan are available and optimal dosing has been defined. 

Rationale 
The cephamycins are cephalosporins that are generally able to 
withstand hydrolysis from ESBL enzymes [102, 103]. The ceph-
amycins available in the United States are cefoxitin and cefote-
tan, which are both IV agents. At least 8 retrospective 
observational studies have compared the clinical outcomes of 
patients with ESBL-E infections—generally UTIs or blood-
stream infections with urinary sources—treated with cephamycins 

versus carbapenems [104–111]. Six of the 8 investigations found 
no difference in clinical outcomes [104, 106–108, 110, 111], 
whereas 2 studies demonstrated poorer outcomes with cepha-
mycins [105]. One of the 2 studies included 57 patients with 
K. pneumoniae bloodstream infections; 14-day mortality was 
55% and 39% in the cephamycin and carbapenem arms, respec-
tively [105]. The second study was the largest published to date, 
including 380 patients with E. coli and K. pneumoniae blood-
stream infections, and 30-day mortality was 29% versus 
13% in the cephamycin and carbapenem arms, respectively 
[109]. Importantly, all 8 studies included diverse sources of 
infection, had notable selection bias, and used a variety 
of cephamycins with differences in dosing, duration, and 
frequency of administration. 

The panel does not suggest cephamycins for the treatment of 
ESBL-E infections, including ESBL-E uncomplicated cystitis. 
Many of the cephamycins investigated in observational studies 
are not available in the United States. Limited numbers of pa-
tients received cefoxitin or cefotetan in published studies [107,  
111, 112]. The panel believes more clinical data associated with 
these agents for the treatment of ESBL-E infections is necessary 
before advocating for their use—including optimal dosing and 
frequency of administration—especially in light of the 2 obser-
vational studies suggesting poorer clinical outcomes with ceph-
amycin use. Data suggest more favorable outcomes with 
high-dose, continuous infusion cefoxitin (ie, 6 g per day in-
fused continuously) [111, 112], but this is challenging to ad-
minister. Because both cefotetan and cefoxitin are only 
available IV and have relatively short half-lives, there does 
not appear to be a feasibility advantage with use of these agents 
over preferred agents for the treatment of ESBL-E infections. 

Question 1.7: What is the Role of β-lactam-β-lactamase Inhibitor 
Combinations and Cefiderocol for the Treatment of Infections Caused by 
ESBL-E? 

Suggested Approach 
The panel suggests that ceftazidime-avibactam, meropenem- 
vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol 
be preferentially reserved for treating infections caused by or-
ganisms exhibiting carbapenem resistance. The panel suggests 
against the use of ceftolozane-tazobactam for the treatment of 
ESBL-E infections, with the possible exception of polymicrobial 
infections. 

Rationale 
Ceftazidime-avibactam, meropenem-vaborbactam, imipenem- 
cilastatin-relebactam, and cefiderocol exhibit activity against 
ESBL-E [113–115]. Avibactam is able to successfully protect 
ceftazidime against hydrolysis by ESBL enzymes [116]. Clinical 
trial data support ceftazidime-avibactam effectiveness against 
ESBL-E infections [117–119]. The carbapenem component of 
meropenem-vaborbactam and imipenem-cilastatin-relebactam  

AMR Treatment Guidance • CID • 9  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciad428/7226183 by guest on 02 O

ctober 2023



provide sufficient activity against ESBL-E, even without the 
addition of a β-lactamase inhibitor. Although ceftazidime-avibactam, 
meropenem-vaborbactam, imipenem-cilastatin-relebactam, and 
cefiderocol are expected to be effective against ESBL-E infec-
tions, the panel suggests that these agents be preferentially re-
served for treating infections caused by organisms exhibiting 
carbapenem resistance, for which a greater need for these agents 
exists. However, in settings of polymicrobial infections or drug 
interactions/intolerances, a newer β-lactam agent may need to 
be considered (eg, ceftazidime-avibactam, imipenem-cilastatin- 
relebactam, or cefiderocol for coinfection with DTR-P. aerugino-
sa and ESBL-E; ceftazidime-avibactam or cefiderocol in settings 
of concomitant valproic acid use [120]). 

Ceftolozane-tazobactam frequently exhibits in vitro activity 
against ESBL-E [121–125]. Additionally, clinical data indicate 
it may be effective for the treatment of ESBL-E infections 
[122–126]. However, the panel has concerns with the ability 
of tazobactam to successfully inhibit ESBL production as dis-
cussed in Question 1.4. The panel suggests against the use 
of ceftolozane-tazobactam for the treatment of ESBL-E 
infections. In polymicrobial infections in which DTR-P. aer-
uginosa and ESBL-E are isolated, the use of ceftolozane- 
tazobactam can be considered, after weighing the pros and 
cons of this approach, to limit exposure to multiple agents 
and their associated toxicities. However, if this approach is taken, 
close monitoring of patients for an appropriate clinical response 
is advised. 

SECTION 2: AmpC β-LACTAMASE–PRODUCING 
ENTEROBACTERALES 

AmpC β-lactamases are β-lactamase enzymes that are pro-
duced at basal levels by a number of Enterobacterales and glu-
cose nonfermenting gram-negative organisms. Their primary 
function is to assist with cell wall recycling [127]. AmpC 
β-lactamases are capable of hydrolyzing a number of β-lactam 
agents, some in settings of basal AmpC production and others 
in settings of increased AmpC production. Increased AmpC 
production by Enterobacterales generally occurs by 1 of 3 
mechanisms: (1) inducible chromosomal gene expression, (2) 
stable chromosomal gene derepression, or (3) constitutively 
expressed ampC genes (frequently carried on plasmids, but 
sometimes integrated into the chromosome) [127, 128]. In 
this document, we will focus on the treatment of infections 
by Enterobacterales species with a moderate to high likelihood 
of inducible ampC gene expression [129, 130]. 

Increased AmpC enzyme production resulting from in-
ducible ampC expression can occur in the presence of spe-
cific antibiotics and results in sufficient enzyme in the 
periplasmic space to increase MICs to certain antibiotics, 
most notably ceftriaxone, cefotaxime, and ceftazidime. In 
this scenario, an Enterobacterales isolate that initially tests 

susceptible to ceftriaxone may exhibit nonsusceptibility to 
this agent after treatment with ceftriaxone is initiated. In 
this guidance document, such organisms are described as 
having a moderate to high risk for clinically significant 
AmpC production. Resistance because of ampC induction 
can be observed after even a few doses of ceftriaxone, cefo-
taxime, or ceftazidime [131]. 

For the other 2 mechanisms (ie, stable chromosomal dere-
pression or constitutively expressed ampC genes), AmpC pro-
duction is always increased. Isolates with either of these 2 
mechanisms are expected to test nonsusceptible to ceftriaxone, 
cefotaxime, and/or ceftazidime. As such, infections by organ-
isms with these resistance mechanisms generally pose less of 
a treatment dilemma than infections caused by isolates with in-
ducible ampC expression. Regarding the first of these 2 mecha-
nisms, some Enterobacterales isolates (eg, certain Escherichia 
coli and Shigella spp.) contain mutations in promoters or atten-
uators of ampC or other related genes (eg, ampD, ampR, 
ampG), stably derepressing gene expression [132]. For the sec-
ond mechanism, constitutive expression of ampC genes (eg, 
blaCMY, blaFOX, blaDHA, blaACT, blaMIR) is most commonly ob-
served in organisms such as E. coli, K. pneumoniae, and 
Salmonella spp [133]. These ampC genes can be found either 
on plasmids or integrated into the bacterial chromosome. 

Question 2.1: Which Enterobacterales Should be Considered at Moderate 
to High Risk for Clinically Significant AmpC Production due to an Inducible 
ampC Gene? 

Suggested Approach 
Enterobacter cloacae complex, Klebsiella aerogenes, and 
Citrobacter freundii are the most common Enterobacterales at 
moderate to high risk for clinically significant AmpC production. 

Rationale 
Quantifying the likelihood of ampC induction across bacterial 
species would be best defined by systematically identifying or-
ganisms initially susceptible to certain β-lactam agents (eg, cef-
triaxone) that, on subsequent isolation (and after β-lactam 
exposure), become resistant, with genotyping and expression 
studies to confirm that the same organism was recovered and 
that AmpC production significantly increased. Unfortunately, 
such studies are not available. 

Commonly used acronyms to denote organisms at risk 
for AmpC production (eg, SPACE, SPICE, ESCPM) obscure 
the wide range of ampC induction potential among gram- 
negative organisms and ignore variance within bacterial genera 
[127, 128]. For example, Citrobacter freundii harbors a chromo-
somal ampC, whereas Citrobacter koseri does not [134–136]. 
Thus, the current acronyms may be overly simplistic and associ-
ated with both an “undercalling” and “overcalling” of the likeli-
hood of clinically significant AmpC production among individual 
bacterial species. As another example, “indole-positive Proteus  
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species” are often included in existing acronyms. 
Indole-positive Proteus spp. currently refers to organisms 
such as P. vulgaris and P. penneri, which generally do not con-
tain chromosomal ampC genes. The terminology “indole- 
positive Proteus species” previously included Proteus rettgeri 
and Proteus morganii (since renamed Providencia rettgeri and 
Morganella morganii, respectively) [137], making the inclusion 
of “indole-positive Proteus spp.” in mnemonics for organisms 
at high risk of AmpC production no longer accurate. 

The emergence of clinically relevant ampC expression during 
antibiotic treatment has been most frequently described for 
E. cloacae complex (herein, referred to as E. cloacae for simplic-
ity), K. aerogenes (formerly Enterobacter aerogenes), and C. 
freundii. Clinical reports suggest that the emergence of resistance 
after exposure to an agent such as ceftriaxone may occur in ap-
proximately 20% of infections caused by these organisms [131,  
138–142]. These clinical observations mirror in vitro mutation 
rate analyses, which also suggest that these organisms are likely 
to overexpress ampC [143]. Therefore, when E. cloacae, K. aero-
genes, or C. freundii are recovered in clinical cultures (other than 
urine cultures in uncomplicated cystitis), the panel suggests 
avoiding treatment with ceftriaxone or ceftazidime, even if an 
isolate initially tests susceptible to these agents (Question 2.2). 

In contrast, other organisms historically presumed to be at 
high risk for the development of clinically significant ampC ex-
pression, such as Serratia marcescens, Morganella morganii, 
and Providencia spp., are unlikely to overexpress ampC based 
on both in vitro analysis [143] and clinical reports [131, 138]. 
Studies indicate that clinically significant AmpC production 
occurs in less than 5% of these organisms. When S. marcescens, 
M. morgannii, or Providencia spp. are recovered from clinical 
cultures, the panel suggests selecting antibiotic treatment ac-
cording to AST results. 

A number of less commonly encountered pathogens (eg, 
Hafnia alvei, Citrobacter youngae, Yersinia enterocolitica) that 
carry inducible chromosomal ampC genes have not undergone 
significant investigation [143–146]. As such, descriptions of 
their potential for clinically significant AmpC production are 
very limited. It is reasonable to use AST results to guide treat-
ment decisions if these organisms are recovered in clinical cul-
tures (eg, administer ceftriaxone if susceptible to ceftriaxone). 
When treating infections caused by these less commonly recov-
ered organisms (or caused by S. marcescens, M. morgannii, or 
Providencia spp.) with a high bacterial burden and limited 
source control (eg, endocarditis, central nervous system infec-
tions), it is alternatively reasonable to consider treatment with 
cefepime instead of ceftriaxone, even if the organism tests 
susceptible to ceftriaxone. As with all infections, if an adequate 
clinical response is not observed after appropriately dosed 
antibiotic therapy is initiated and necessary source control 
measures are taken, clinicians should consider the possibility 
of the emergence of resistance to the initially prescribed agent. 

Question 2.2: What Features Should be Considered in Selecting Antibiotics 
for Infections Caused by Organisms With Moderate to High Risk of 
Clinically Significant AmpC Production due to an Inducible ampC Gene? 

Suggested Approach 
Several β-lactam antibiotics are at relatively high risk of induc-
ing ampC genes. Both the ability to induce ampC genes and the 
inability to withstand AmpC hydrolysis should inform antibi-
otic decision-making. 

Rationale 
β-lactam antibiotics fall within a spectrum of potential for 
inducing ampC genes. Aminopenicillins (ie, amoxicillin, 
ampicillin), narrow-spectrum (ie, first-generation) cephalo-
sporins, and cephamycins are potent ampC inducers [147,  
148]. However, organisms at moderate to high risk for clin-
ically significant ampC induction (eg, E. cloacae) hydrolyze 
these antibiotics even at basal ampC expression levels. 
Therefore, such AmpC-E isolates will generally test as non-
susceptible to these drugs, averting treatment dilemmas. 
Imipenem is also a potent ampC inducer but it generally 
remains stable to AmpC-E hydrolysis because of the forma-
tion of stable acyl enzyme complexes [147]. The induction 
potential of ertapenem and meropenem has not been 
formally investigated but, similar to imipenem, they are 
generally stable to AmpC hydrolysis [149, 150]. 
Piperacillin-tazobactam, ceftriaxone, ceftazidime, and 
aztreonam are relatively weak ampC inducers [148, 151]. 
Available evidence indicates that despite their limited ability 
to induce ampC, the susceptibility of these agents to hydro-
lysis makes them unlikely to be effective for the treatment of 
infections by organisms at moderate to high risk for clini-
cally significant AmpC production [150, 152–154]. 

Cefepime has the advantage of both being a weak inducer of 
ampC and of withstanding hydrolysis by AmpC β-lactamases 
because of the formation of stable acyl enzyme complexes 
[155, 156]. Therefore, cefepime is generally an effective agent 
for the treatment of AmpC-E infections [157]. TMP-SMX, flu-
oroquinolones, aminoglycosides, tetracyclines, and other 
non-beta-lactam antibiotics do not induce ampC and are also 
not substrates for AmpC hydrolysis. 

Question 2.3: What is the Role of Cefepime for the Treatment of Infections 
Caused by Enterobacterales at Moderate to High Risk of Clinically 
Significant AmpC Production due to an Inducible ampC Gene? 

Suggested Approach 
Cefepime is suggested for the treatment of infections caused by 
organisms at moderate to high risk of significant AmpC pro-
duction (ie, E. cloacae complex, K. aerogenes, and C. freundii). 
Limited data suggest a carbapenem may be preferred for infec-
tions caused by these organisms when the cefepime MIC is 
≥4 µg/mL, assuming carbapenem susceptibility is demonstrat-
ed because ESBL coproduction may be present, but data con-
tinue to evolve.  
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Rationale 
Cefepime is an oxyimino-cephalosporin that is relatively stable 
against AmpC enzymes and that also has low ampC induction 
potential [155, 156, 158, 159]. However, several case reports of 
therapeutic failure of cefepime against infections caused 
by AmpC-E have led to hesitancy in prescribing this agent 
[160–162]. Understanding the contribution of AmpC produc-
tion to cefepime clinical failure in these case reports is challeng-
ing as cefepime was generally dosed every 12 hours (as opposed 
to every 8 hours), coproduction of ESBL enzymes was rarely in-
vestigated, and outer membrane porin mutations were often 
identified—also elevating carbapenem MICs (ie, carbapenem- 
resistant Enterobacterales), potentially contributing to cefe-
pime treatment failure [159, 163, 164]. 

Clinical trials comparing clinical outcomes of patients with 
AmpC-E infections treated with cefepime versus carbapenem 
therapy are not available. However, several observational stud-
ies suggest cefepime is associated with similar clinical outcomes 
as carbapenem therapy [142, 165, 166]. Furthermore, a meta- 
analysis including 7 studies comparing clinical outcomes of pa-
tients receiving cefepime versus carbapenems for Enterobacter 
spp., Citrobacter spp., and Serratia spp. bloodstream infections 
did not find differences in clinical outcomes between these 
treatment regimens, although considerable heterogeneity be-
tween studies existed, ill-appearing patients were more likely 
to receive carbapenem therapy, and risk of AmpC production 
varied by the included species [157]. In light of both the advan-
tages of cefepime as a compound and no clear clinical failure 
signals in the literature when administered for the treatment 
of AmpC-E infections, the panel suggests cefepime as a 
preferred treatment option for E. cloacae, K. aerogenes, and 
C. freundii infections (Table 1). 

Although cefepime may be effective for the treatment of 
AmpC-E infections, it remains suboptimal against infections 
caused by ESBL-E [92, 167]. Enterobacterales isolates exhibit-
ing cefepime MICs of 4 to 8 µg/mL (ie, susceptible dose- 
dependent) may have a higher likelihood of coproducing 
ESBLs compared with isolates with lower cefepime MICs. In 
a study from Taiwan, 89% of E. cloacae isolates with cefepime 
MICs of 4 to 8 µg/mL were ESBL-producing [101]. The same 
study evaluated 217 patients with E. cloacae bloodstream infec-
tions and found that all 10 patients with infections caused by 
ESBL-producing isolates with cefepime MICs of 4 to 8 µg/mL 
who received cefepime died within 30 days. In contrast, none 
of the 6 patients who received cefepime for infections caused 
by non–ESBL-producing cefepime isolates with MICs of 4 to 
8 µg/mL died within 30 days [101]. 

A small, single-center US study also suggests that the likeli-
hood of ESBL production increases in E. cloacae as cefepime 
MICs increase [168]. Contemporary data specific to the 
United States are needed to better understand how frequently 
ESBLs are produced by Enterobacterales at moderate to high 

risk of clinically significant AmpC production. However, in 
light of available data, we advise caution with administering 
cefepime for infections caused by E. cloacae, K. aerogenes, 
and C. freundii with cefepime MICs of 4 to 8 µg/mL (ie, suscep-
tible dose-dependent range) [16] (Table 2). 

Question 2.4: What is the Role of Ceftriaxone for the Treatment of 
Infections Caused by Enterobacterales at Moderate to High Risk of 
Clinically Significant AmpC Production due to an Inducible ampC Gene? 

Suggested Approach 
Ceftriaxone (or cefotaxime or ceftazidime) is not suggested for 
the treatment of invasive infections caused by organisms at 
moderate to high risk of clinically significant AmpC produc-
tion (eg, E. cloacae complex, K. aerogenes, and C. freundii). 
Ceftriaxone is reasonable for uncomplicated cystitis caused 
by these organisms when susceptibility is demonstrated. 

Rationale 
Clinical reports differ on how frequently resistance to ceftriax-
one emerges during the treatment of infections by 
Enterobacterales at moderate to high risk for clinically signifi-
cant ampC induction. Several challenges exist when interpret-
ing studies that have attempted to address this question. 
First, there are no CLSI-endorsed approaches for AmpC detec-
tion in clinical isolates, making their accurate identification dif-
ficult. Second, these organisms may display ceftriaxone 
non-susceptibility for other reasons (eg, ESBL production); 
however, such mechanisms are rarely investigated in clinical 
studies for organisms other than E. coli, K. pneumoniae, 
K. oxytoca, and P. mirabilis. Third, studies often combine esti-
mates for organisms at low risk for significant AmpC produc-
tion (eg, S. marcescens, M. morgannii) with those posing a 
higher risk (eg, E. cloacae, C. freundii), obscuring our under-
standing of how frequently resistance to ceftriaxone emerges 
for organisms truly at high risk for AmpC production [169]. 
Fourth, studies that evaluate the proportion of isolates exhibit-
ing ceftriaxone nonsusceptibility after ceftriaxone exposure do 
not include confirmation of genetic relatedness of index and 
subsequent isolates. Additionally, most AmpC clinical studies 
use pre-2010 CLSI ceftriaxone breakpoints (ie, ceftriaxone 
MICs ≤8 µg/mL), making translation of prevalence estimates 
to current CLSI ceftriaxone susceptibility breakpoints of 
≤1 µg/mL challenging [16, 169]. Finally, there is significant het-
erogeneity in sources of infections, severity of illness, preexist-
ing medical conditions, coadministration of additional 
antibiotics, and ceftriaxone dosing and duration across studies, 
complicating the interpretation of clinical data. 

These limitations notwithstanding, available data suggest 
that the emergence of resistance after ceftriaxone exposure 
occurs in approximately 20% of infections caused by E. cloacae, 
K. aerogenes, or C. freundii [131, 138–142, 170–172]. 
Comparative effectiveness studies addressing the management  
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of presumed AmpC-producing infections have mostly focused 
on the emergence of ceftriaxone resistance, rather than on clin-
ical outcomes. Clinical trials have not compared the clinical 
outcomes of patients with presumed AmpC-E infections treat-
ed with ceftriaxone compared with alternate agents (ie, cefe-
pime). A number of observational studies compared the 
clinical outcomes of patients with infections caused by 
E. cloacae, K. aerogenes, and C. freundii treated with ceftriaxone 
compared with other β-lactams [139, 170, 171, 173–175]. The 
most rigorous of these studies is a multicenter observational 
study that included 381 patients with bloodstream infections 
caused by Enterobacter spp., Serratia spp., or Citrobacter spp 
[173]. Similar to the other observational studies evaluating 
this question, this study did not identify differences in clinical 
outcomes when comparing patients treated with ceftriaxone 
versus carbapenems. However, this study had several of the 
limitations outlined previously. 

Nonetheless, because available data indicate a reasonable risk 
for the emergence of resistance when ceftriaxone (or ceftazi-
dime) is prescribed for infections caused by organisms at mod-
erate to high risk of AmpC production (ie, infections caused by 
E. cloacae, K. aerogenes, C. freundii), the panel suggests gener-
ally avoiding ceftriaxone (or ceftazidime) when treating infec-
tions caused by these organisms. Based on the mild nature of 
uncomplicated cystitis and the sufficient urinary excretion of 
ceftriaxone, ceftriaxone may be adequate therapy for the man-
agement of AmpC-E cystitis. Preferred treatment options for 
AmpC-E cystitis are described in Question 2.7. 

Question 2.5: What is the Role of Piperacillin-Tazobactam for the 
Treatment of Infections Caused by Enterobacterales at Moderate to High 
Risk of Clinically Significant AmpC Production due to an Inducible ampC 
Gene? 

Suggested Approach 
Piperacillin-tazobactam is not suggested for the treatment of 
serious infections caused by Enterobacterales at moderate 
to high risk of clinically significant inducible AmpC production. 

Rationale 
Tazobactam is less effective at protecting β-lactams from AmpC 
hydrolysis than newer β-lactamase inhibitors, such as avibactam, 
relebactam, and vaborbactam [150, 151, 164, 176]. The role of 
piperacillin-tazobactam in treating Enterobacterales at mod-
erate to high risk for clinically significant AmpC production 
remains uncertain. A 2019 meta-analysis summarized 
the findings of 8 observational studies and did not identify a 
difference in mortality between patients treated with 
piperacillin-tazobactam and carbapenems for bacteremia by 
Enterobacter spp., Citrobacter spp., or Serratia spp. [169]. 
However, significant heterogeneity across studies and con-
founding by indication likely existed (ie, ill-appearing patients 
were more likely to be prescribed carbapenems). In 2 observa-
tional studies included in this meta-analysis, 30-day mortality 

among patients treated with piperacillin-tazobactam was nu-
merically higher than among patients treated with carbape-
nems (15% [6/41 patients] vs 7% [3/41 patients] [177] and 
45% [10/22 patients] vs 11% [5/45 patients], respectively) 
[174]. In an observational study of 103 patients published sub-
sequent to the meta-analysis, piperacillin-tazobactam mono-
therapy was associated with over twice the odds of death 
within 30 days compared with alternative agents [172]. 

A pilot unblinded clinical trial compared the outcomes of 72 
patients with bloodstream infections caused by Enterobacter 
spp., K. aerogenes, C. freundii, M. morganii, Providencia spp., 
or S. marcescens randomized to piperacillin-tazobactam (4.5 g 
IV every 6 hours as a standard infusion) or meropenem (1 g 
IV every 8 hours as a standard infusion) [178]. There were 
no significant differences in the primary outcome (a compos-
ite outcome including 30-day mortality, clinical failure, mi-
crobiological failure, or microbiological relapse) between 
the study arms. However, some notable and seemingly con-
flicting findings were observed for individual components 
of this composite outcome: mortality (0% vs 6%, P = .13); 
clinical failure (21% vs 12%, P = .29); microbiological failure 
(13% vs 0%), P = .03); and microbiological relapse (0% vs 9%, 
P = .06), for the piperacillin-tazobactam and meropenem 
arms, respectively. The findings of this trial are challenging 
to interpret, and a larger trial is needed to more definitively 
determine the role of piperacillin-tazobactam for the treat-
ment of organisms at moderate to high risk for clinically sig-
nificant ampC induction. 

In light of the limited ability of tazobactam to protect piper-
acillin from AmpC hydrolysis in vitro and at least 3 observa-
tional studies identifying increased mortality in patients 
prescribed piperacillin-tazobactam [171, 174, 177], the panel 
suggests caution if prescribing piperacillin-tazobactam for seri-
ous infections caused by AmpC-E. Piperacillin-tazobactam 
may be a reasonable treatment option for mild infections 
such as uncomplicated cystitis. 

Question 2.6: What is the Role of β-lactam-β-Lactamase Inhibitor 
Combinations and Cefiderocol for the Treatment of Infections Caused by 
Enterobacterales at Moderate to High Risk of Clinically Significant AmpC 
Production due to an Inducible ampC Gene? 

Suggested Approach 
The panel suggests that ceftazidime-avibactam, meropenem- 
vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol 
be preferentially reserved for treating infections caused by or-
ganisms exhibiting carbapenem resistance. The panel does 
not suggest the use of ceftolozane-tazobactam as a treatment 
option for AmpC-E infections, with the possible exception of 
polymicrobial infections. 

Rationale 
Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem- 
cilastatin-relebactam generally exhibit in vitro activity against  
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AmpC-E [116, 179, 180]. Although ceftazidime-avibactam is 
likely to be effective as a treatment for infections caused by 
AmpC-E, some data suggest it may have slightly higher failure 
rates for the treatment of AmpC-E infections compared with 
ESBL-E infections [118]. Although the frequency is unknown, 
emergence of resistance of AmpC-E to ceftazidime-avibactam 
has been described [181, 182]. 

Cefiderocol demonstrates in vitro activity against AmpC-E 
[115, 183] and is likely to be effective in clinical practice, although 
some case reports indicate the potential for AmpC-E to develop 
resistance to the drug [181, 182]. Although ceftazidime-avibactam, 
meropenem-vaborbactam, imipenem-cilastatin-relebactam, and 
cefiderocol are likely to be effective against AmpC-E infections, 
the panel suggests that these agents be preferentially reserved 
for treating infections caused by organisms exhibiting carbape-
nem resistance, in which a greater need for them exists. 

Ceftolozane was developed to be more resistant to hydrolysis 
than earlier cephalosporins against Pseudomonas-derived 
AmpC cephalosporinases; however, much less is known about 
ceftolozane-tazobactam’s activity against AmpC-E. Tazobactam 
appears less effective at protecting β-lactams from AmpC hydro-
lysis compared with newer β-lactamase inhibitors, such as avibac-
tam, relebactam, and vaborbactam [150, 151, 164, 176]. Although 
some in vitro data suggest ceftolozane-tazobactam has activity 
against AmpC-E [184], in at least 1 investigation the agent was 
active against only 19% of E. cloacae isolates [185]. Clinical out-
comes data for ceftolozane-tazobactam for the treatment of 
AmpC-E infections are limited; a clinical trial evaluating this 
question is under way [186]. In light of the concerns described 
for tazobactam inhibition in Question 2.5 along with unclear in-
dependent activity of ceftolozane against Enterobacterales at 
moderate to high risk for clinically significant AmpC production, 
the panel does not suggest the use of ceftolozane-tazobactam as a 
treatment option for AmpC-E infections. 

In polymicrobial infections in which DTR-P. aeruginosa 
and AmpC-E are isolated, the use of ceftolozane-tazobactam 
can be considered, after weighing the pros and cons of this ap-
proach, to limit exposure to multiple agents and their associated 
toxicities. However, if this approach is taken, close monitoring 
of patients for an appropriate clinical response is advised. 

Question 2.7: What is the Role of non-β-Lactam Therapy for the Treatment 
of Infections Caused by Enterobacterales at Moderate to High Risk of 
Clinically Significant AmpC Production due to an Inducible ampC Gene? 

Suggested Approach 
Nitrofurantoin or TMP-SMX are preferred treatment options 
for uncomplicated AmpC-E cystitis. Aminoglycosides are alter-
native treatments for uncomplicated cystitis, pyelonephritis, 
and cUTI caused by AmpC-E. TMP-SMX or fluoroquinolones 
can be considered for the treatment of invasive infections 
caused by organisms at moderate to high risk of clinically sig-
nificant AmpC production. 

Rationale 
Preferred treatment options for AmpC-E uncomplicated cysti-
tis include nitrofurantoin [19] or TMP-SMX [38, 187]. 
Ciprofloxacin or levofloxacin are alternative treatment options. 
A single IV dose of an aminoglycoside is an alternative treatment 
for AmpC-E uncomplicated cystitis [27]. Aminoglycosides are 
nearly exclusively eliminated by the renal route in their active 
form. A single IV dose is generally effective for uncomplicated cys-
titis, with minimal toxicity, but robust clinical outcomes data are 
limited [27]. 

In patients in whom the potential for nephrotoxicity is 
deemed acceptable, aminoglycosides (dosed based on thera-
peutic drug monitoring results) for a full treatment course 
are an alternative option for the treatment of AmpC-E pyelone-
phritis or cUTI [39, 40] (Table 1, Supplementary Material). 
Once-daily plazomicin was noninferior to meropenem in a 
clinical trial that included patients with pyelonephritis and 
cUTIs caused by Enterobacterales [41]. Individual aminoglyco-
sides are equally effective if susceptibility is demonstrated. 

The role of TMP-SMX or fluoroquinolones for the treatment 
of AmpC-E infections outside of the urinary tract has not been 
formally evaluated in clinical trials or robust observational 
studies. However, neither TMP-SMX nor fluoroquinolones 
are substrates for AmpC hydrolysis. Transitioning to oral 
TMP-SMX or fluoroquinolones has been shown to be effective 
for Enterobacterales bloodstream infections, including those 
caused by AmpC-E, after appropriate clinical milestones are 
achieved [60, 61]. Based on the known bioavailability and 
sustained serum concentrations of oral TMP-SMX and fluo-
roquinolones, these agents are treatment options for patients 
with AmpC-E infections if (1) susceptibility to an appropri-
ate oral agent is demonstrated, (2) patients are hemodynam-
ically stable, (3) reasonable source control measures have 
occurred, and (4) concerns about insufficient intestinal 
absorption are not present. The panel advises avoiding tran-
sitioning to nitrofurantoin, fosfomycin, doxycycline, or 
amoxicillin-clavulanate for AmpC-E bloodstream infec-
tions. Nitrofurantoin and fosfomycin achieve poor serum 
concentrations. Amoxicillin-clavulanate and doxycycline 
achieve unreliable serum concentrations. 

SECTION 3: CARBAPENEM-RESISTANT 
ENTEROBACTERALES 

CRE account for more than 13 000 infections and contribute to 
greater than 1000 deaths in the United States annually [2]. The 
CDC defines CRE as members of the Enterobacterales order re-
sistant to at least 1 carbapenem antibiotic or producing a carba-
penemase enzyme [188]. Resistance to at least 1 carbapenem 
other than imipenem is required for bacteria generally not sus-
ceptible to imipenem (eg, Proteus spp., Morganella spp., 
Providencia spp.) [188]. For the purposes of this guidance  

14 • CID • Tamma et al  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciad428/7226183 by guest on 02 O

ctober 2023

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciad428#supplementary-data


document, CRE refers to organisms displaying resistance to ei-
ther meropenem or imipenem, or those Enterobacterales iso-
lates producing carbapenemase enzymes (Question 3.1). 

CRE comprise a heterogenous group of pathogens encom-
passing multiple mechanisms of resistance, broadly divided 
into those that are not carbapenemase-producing and those 
that are carbapenemase-producing. CRE that are not 
carbapenemase-producing may be the result of amplification 
of non-carbapenemase β-lactamase genes (eg, ESBL genes) 
with concurrent outer membrane porin disruption [189]. 
Carbapenemase-producing isolates account for approximately 
35% to 59% of CRE cases in the United States, when applying 
the CDC definition [190, 191]. 

The most common carbapenemases in the United States are 
K. pneumoniae carbapenemases (KPCs), which are not limited 
to K. pneumoniae isolates. Other notable carbapenemases that 
have been identified in the United States include New Delhi 
metallo-β-lactamases (NDMs), Verona integron-encoded 
metallo-β-lactamases (VIMs), imipenem-hydrolyzing metal-
lo-β-lactamases (IMPs), and oxacillinases (eg, OXA-48-like) 
[192, 193]. Knowledge of whether a CRE isolate is 
carbapenemase-producing and, if it is, the specific carbapene-
mase produced is important in guiding treatment decisions. 

Phenotypic tests such as the modified carbapenem inactivation 
method differentiate carbapenemase and non–carbapenemase- 
producing CRE [194]. Molecular testing can identify specific car-
bapenemase gene families (eg, differentiating blaKPC from 
blaOXA-48-like genes). Carbapenemase phenotypic and/or geno-
typic testing are performed by a minority of clinical microbiology 
laboratories, but the panel strongly encourages all clinical micro-
biology laboratories to pursue carbapenemase testing to inform 
optimal treatment decisions. Treatment suggestions for CRE in-
fections assume that in vitro activity of preferred and alternative 
antibiotics has been demonstrated. 

Question 3.1: What is the Preferred Treatment Approach for Infections 
Caused by Enterobacterales Isolates Without Carbapenemase Production 
that Remain Susceptible to Meropenem and Imipenem but are not 
Susceptible to Ertapenem? 

Suggested Approach 
For infections caused by Enterobacterales isolates that exhibit 
susceptibility to meropenem and imipenem (ie, MICs ≤1 µg/mL), 
but are not susceptible to ertapenem (ie, MICs ≥1 µg/mL), 
the use of extended-infusion meropenem (or imipenem-cilastatin) 
is suggested, assuming no carbapenemase gene has been identified. 

Rationale 
In this guidance document, CRE refers to Enterobacterales iso-
lates resistant to meropenem or imipenem or Enterobacterales 
producing a carbapenemase enzyme. Questions 3.2 through 
3.9 discuss the treatment of infections caused by CRE isolates. 
For infections caused by Enterobacterales isolates that exhibit 
susceptibility to meropenem and imipenem (ie, MICs ≤1 µg/mL), 

but are not susceptible to ertapenem (ie, MICs ≥1 µg/mL), 
we suggest the use of extended-infusion meropenem (or 
imipenem-cilastatin), only if no carbapenemase gene has 
been identified (Tables 1 and 2). Standard-infusion merope-
nem or imipenem-cilastatin may be reasonable for uncompli-
cated cystitis (Table 1). 

For isolates susceptible to meropenem but not susceptible to 
imipenem (and vice versa), in the absence of data to inform the 
optimal treatment approach, the panel suggests basing the 
treatment decision on the severity of illness of the patient 
and site of infection. For example, in this scenario, meropenem 
may be a reasonable treatment for a urinary tract infection but 
not for a complex intra-abdominal infection. The panel 
suggests against the use of meropenem-vaborbactam or imipe-
nem-cilastatin-relebactam to treat ertapenem-resistant, mero-
penem-susceptible, and imipenem-susceptible infections because 
these agents are unlikely to offer any substantial benefit beyond 
that of extended-infusion meropenem or imipenem-cilastatin 
alone. 

Question 3.2: What are Preferred Antibiotics for the Treatment of 
Uncomplicated Cystitis Caused by CRE? 

Suggested Approach 
Nitrofurantoin, TMP-SMX, ciprofloxacin, or levofloxacin are 
preferred treatment options for uncomplicated cystitis caused 
by CRE, although the likelihood of susceptibility to any of these 
agents is low. A single dose of an aminoglycoside, oral fosfomy-
cin (for E. coli only), colistin, ceftazidime-avibactam, meropenem- 
vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol 
are alternative treatment options for uncomplicated cystitis caused 
by CRE. 

Rationale 
Clinical trial data evaluating the efficacy of most preferred 
agents for uncomplicated CRE cystitis are not available. 
However, as nitrofurantoin, TMP-SMX, ciprofloxacin, or levo-
floxacin all achieve high concentrations in urine, they are ex-
pected to be effective for uncomplicated CRE cystitis if the 
isolate is susceptible [4, 19–22]. 

A single dose of an aminoglycoside is an alternative option 
for uncomplicated CRE cystitis. Aminoglycosides are almost 
exclusively eliminated by the renal route in their active form. 
A single IV dose is generally effective for cystitis, with minimal 
toxicity [27]. Individual aminoglycosides are equally effective if 
susceptibility is demonstrated. In general, higher percentages of 
CRE clinical isolates are susceptible to amikacin and plazomi-
cin than to other aminoglycosides [195, 196]. Plazomicin 
may remain active against isolates resistant to other aminogly-
cosides [197]. 

Oral fosfomycin is an alternative option for the treatment of 
uncomplicated CRE cystitis caused by E. coli as the fosA gene 
(intrinsic to many gram-negative organisms) can hydrolyze  
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fosfomycin and may lead to clinical failure [28, 29]. Clinical tri-
al data indicate that a single dose of oral fosfomycin is associ-
ated with higher clinical failure than a 5-day course of 
nitrofurantoin for uncomplicated cystitis [19]. 

Colistin (the active form of the commercially available par-
enteral inactive prodrug colistimethate sodium) is an alterna-
tive agent for treating uncomplicated CRE cystitis. Colistin 
converts to its active form in the urinary tract; clinicians should 
remain cognizant of the associated risk of nephrotoxicity [198]. 
Polymyxin B should not be used as treatment for uncomplicat-
ed CRE cystitis because of its predominantly nonrenal clear-
ance [199]. 

Ceftazidime-avibactam, meropenem-vaborbactam, imipenem- 
cilastatin-relebactam, and cefiderocol are alternative options 
for uncomplicated CRE cystitis. They are designated alterna-
tive agents to preserve their activity for more invasive CRE 
infections. Data are insufficient to favor 1 agent over the oth-
ers but all of these agents are reasonable treatment options 
based on published comparative effectiveness studies [117,  
200–204]. 

Question 3.3: What Are Preferred Antibiotics for the Treatment of 
Pyelonephritis and cUTI Caused by CRE? 

Suggested Approach 
TMP-SMX, ciprofloxacin, or levofloxacin are preferred 
treatment options for pyelonephritis and cUTI caused by 
CRE if susceptibility is demonstrated. Ceftazidime-avibac-
tam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, 
and cefiderocol are also preferred treatment options for pyelo-
nephritis and cUTIs. Aminoglycosides are alternative treat-
ment options. 

Rationale 
Although the minority of CRE are expected to retain suscepti-
bility to TMP-SMX, ciprofloxacin, or levofloxacin, these agents 
are all preferred agents to treat CRE pyelonephritis or cUTI if 
susceptibility is demonstrated [36–38]. 

Ceftazidime-avibactam, meropenem-vaborbactam, imipe-
nem-cilastatin-relebactam, and cefiderocol are preferred treat-
ment options for pyelonephritis and cUTIs caused by CRE 
based on clinical trials showing noninferiority of these agents 
to common comparator agents for UTIs [117, 200–204]. 
Isolates included in these trials were overwhelmingly carbape-
nem susceptible. Data are insufficient to favor 1 agent over the 
others. 

In patients in whom the potential for nephrotoxicity is 
deemed acceptable, aminoglycosides for a full treatment course 
are an alternative option for the treatment of CRE pyelonephri-
tis or cUTI [39–41] (Table 1, Supplementary Material). 
Individual aminoglycosides are equally effective if susceptibil-
ity is demonstrated. 

Question 3.4: What Are the Preferred Antibiotics for the Treatment of 
Infections Outside of the Urinary Tract Caused by CRE, When 
Carbapenemase Testing Results are Either not Available or Negative? 

Suggested Approach 
Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem- 
cilastatin-relebactam are the preferred treatment options for 
infections outside of the urinary tract caused by CRE, when car-
bapenemase testing results are either not available or negative. 
For patients with CRE infections who within the previous 
12 months have received medical care in countries with a rela-
tively high prevalence of metallo-β-lactamase–producing or-
ganisms or who have previously had a clinical or surveillance 
culture where a metallo-β-lactamase–producing isolate was 
identified, preferred treatment options include the combina-
tion of ceftazidime-avibactam plus aztreonam, or cefiderocol 
as monotherapy, while awaiting AST results to the novel 
β-lactam agents and carbapenemase testing results. 

Rationale 
The CDC characterized more than 42 000 CRE isolates collect-
ed from between 2017 and 2019 and found that approximately 
35% of CRE clinical or surveillance isolates in the United States 
carry 1 of the main 5 carbapenemase genes [190]. Of these 35% 
of isolates, the specific prevalence by carbapenemase gene fam-
ily is as follows: blaKPC (86%), blaNDM (9%), blaVIM (<1%), 
blaIMP (1%), or blaOXA-48-like (4%) [190]. A separate cohort of 
1040 clinical and surveillance CRE isolates from across the 
United States demonstrated that 59% of isolates were carbape-
nemase producing, with the distribution of carbapenemase 
genes relatively similar: blaKPC (92%), blaNDM (3%), blaVIM 

(<1%), blaIMP (<1%), and blaOXA-48-like (3%) [191]. 
Ceftazidime-avibactam has activity against most KPC- and 

OXA-48-like–producing CRE isolates [205, 206]. Meropenem- 
vaborbactam and imipenem-cilastatin-relebactam are active 
against most Enterobacterales that produce KPC enzymes but 
generally not those that produce OXA-48–like carbapene-
mases [207–215]. Neither ceftazidime-avibactam, meropenem- 
vaborbactam, nor imipenem-cilastatin-relebactam have 
activity against metallo-β-lactamase (eg, NDM) producing 
Enterobacterales. As described, the vast majority of CRE clin-
ical isolates in the United States either do not produce carbape-
nemases or, if they do, produce KPCs. Ceftazidime-avibactam, 
meropenem-vaborbactam, and imipenem-cilastatin-relebactam 
all have a high likelihood of activity against CRE that do not pro-
duce carbapenemases [216, 217]. There do not appear to be differ-
ences in the effectiveness of these agents when susceptibility has 
been demonstrated. 

Cefiderocol is suggested as an alternative treatment option 
for CRE infections outside of urine. Cefiderocol is a synthetic 
conjugate composed of a cephalosporin moiety and a catechol- 
type siderophore, which binds to iron and facilitates bacterial 
cell entry using active iron transporters [218]. Once inside  
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the periplasmic space, the cephalosporin moiety dissociates 
from iron and binds primarily to PBP3 to inhibit bacterial 
cell wall synthesis [219]. Cefiderocol is highly likely to be active 
against CRE clinical isolates because it exhibits activity against 
Enterobacterales producing any of the 5 major carbapenemase 
enzymes, as well as CRE isolates not producing carbapene-
mases [216, 220]. In an effort to preserve cefiderocol activity 
for infections caused by pathogens where other β-lactam agents 
may have little to no activity, such as those caused by metallo- 
β-lactamase–producing Enterobacterales or by nonfermenting 
gram-negative organisms, the panel suggests cefiderocol as an 
alternative agent for infections caused by non-metallo- 
β-lactamase–producing CRE. Patients with CRE infections 
who have received medical care in countries with a relatively 
high prevalence of metallo-β-lactamase–producing CRE within 
the previous 12 months [221] or who previously had a clinical or 
surveillance culture where metallo-β-lactamase–producing organ-
isms were identified have a high likelihood of being infected with 
metallo-β-lactamase–producing Enterobacterales. For such patients 
(if carbapenemase results are not yet available), preferred treatment 
options include the combination of ceftazidime-avibactam plus 
aztreonam, or cefiderocol as monotherapy (Question 3.6). 

Tigecycline or eravacycline are alternative options for the 
treatment of CRE infections not involving the bloodstream or 
urinary tract (Question 3.9). Their activity is independent of 
the presence or type of carbapenemase. 

Previously, it was considered standard practice to administer 
extended-infusion meropenem in combination with a second 
agent, frequently polymyxins or aminoglycosides, for the treat-
ment of infections caused by CRE isolates with meropenem 
MICs as high as 8 to 16 µg/mL [222]. PK/PD data suggested 
that extended-infusion meropenem may remain active against 
infections caused by organisms with carbapenem MICs in this 
range [223–225]. However, subsequent observational and trial 
data indicate increased mortality and excess nephrotoxicity as-
sociated with polymyxin or aminoglycoside-based regimens 
relative to newer β-lactam-β-lactamase inhibitor agents for 
the treatment of CRE infections [226–237]. Therefore, the pan-
el advises against the use of extended-infusion carbapenems 
with or without the addition of a second agent for the treatment 
of CRE infections. 

Question 3.5: What are the Preferred Antibiotics for the Treatment of 
Infections Outside of the Urinary Tract Caused by CRE if KPC Production is 
Present? 

Suggested Approach 
Meropenem-vaborbactam, ceftazidime-avibactam, and imipenem- 
cilastatin-relebactam are preferred treatment options for 
KPC-producing infections. Cefiderocol is an alternative option. 

Rationale 
Preferred agents for KPC-producing infections include meropenem- 
vaborbactam, ceftazidime-avibactam, or imipenem-cilastatin- 

relebactam [205, 207–212, 238, 239]. Although all 3 agents 
are preferred agents for the treatment of KPC-producing infec-
tions, the panel slightly favors meropenem-vaborbactam, followed 
by ceftazidime-avibactam, and then imipenem-cilastatin- 
relebactam, based on available data regarding clinical outcomes 
and emergence of resistance. These agents are associated with 
improved clinical outcomes and reduced toxicity compared 
with other regimens commonly used to treat KPC-producing 
infections, which are often polymyxin-based [226–235, 238]. 
Clinical trials comparing these agents to each other for the 
treatment of KPC-producing infections are not available. 

An observational study compared the clinical outcomes of 
patients who received either meropenem-vaborbactam or 
ceftazidime-avibactam for at least 72 hours for the treatment 
of CRE infections [240]. Carbapenemase status was largely un-
available. Clinical cure and 30-day mortality between the 26 pa-
tients who received meropenem-vaborbactam and 105 patients 
who received ceftazidime-avibactam were 85% and 61% (limit-
ed to patients with isolates exhibiting susceptibility to the agent 
administered) and 12% and 19%, respectively. Although these 
differences were not statistically significant, they numerically 
favor meropenem-vaborbactam. Of patients who experienced 
recurrent CRE infections, 0% (0 of 3) of patients receiving 
meropenem-vaborbactam and 20% (3 of 15) patients receiving 
ceftazidime-avibactam had subsequent CRE isolates that devel-
oped resistance to initial therapy. This study had several impor-
tant limitations: likely selection bias because of its observational 
nature, relatively small numbers of patients, heterogenous sites 
of CRE infection, more than half of patients had polymicrobial 
infections, and more than half of patients received additional 
antibiotic therapy. These limitations notwithstanding, this 
study suggests that both meropenem-vaborbactam and 
ceftazidime-avibactam are reasonable treatment options for 
KPC-producing infections, although the emergence of resis-
tance may be more common with ceftazidime-avibactam 
(Question 3.8). At least 2 groups that have published their clin-
ical experiences with the use of ceftazidime-avibactam and 
meropenem-vaborbactam similarly found that patients who 
received meropenem-vaborbactam had a slightly higher likeli-
hood of clinical cure and survival and a lower risk of emergence 
of resistance than patients treated with ceftazidime-avibactam 
[241–244]. 

Limited clinical data are available for imipenem-cilastatin- 
relebactam compared with the other novel β-lactam- 
β-lactamase inhibitor agents. A clinical trial including patients 
with infections caused by gram-negative organisms not suscepti-
ble to imipenem assigned patients to receive either imipenem- 
cilastatin-relebactam versus imipenem-cilastatin and colistin 
[229]. Of patients with Enterobacterales infections, 40% (2 of 5 pa-
tients) and 100% (2 of 2 patients) experienced a favorable clinical 
response with imipenem-cilastatin-relebactam and imipenem- 
cilastatin in combination with colistin, respectively [229]. It is  
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difficult to draw meaningful conclusions from these data given 
the small numbers. However, in vitro activity of imipenem- 
cilastatin-relebactam against CRE [214, 245–248], clinical experi-
ence with imipenem-cilastatin, and the stability of relebactam as a 
β-lactamase inhibitor [249] suggest imipenem-cilastatin- 
relebactam is likely to be effective for CRE infections if it tests 
susceptible. 

Cefiderocol is an alternative treatment option for 
KPC-producing Enterobacterales [220]. A clinical trial identi-
fied all-cause mortality at 22% versus 21% for patients with 
KPC-producing infections treated with cefiderocol versus alter-
native therapy (mostly polymyxin-based regimens), respective-
ly [204]. Clinical investigations comparing the effectiveness of 
cefiderocol versus newer β-lactam-β-lactamase inhibitors for 
KPC-producing Enterobacterales infections are not available. 
The panel suggests cefiderocol, as monotherapy, as an alternative 
agent for treating KPC-producing pathogens to reserve it for the 
treatment of infections caused by metallo-β-lactamase–producing 
Enterobacterales or glucose nonfermenting gram-negative 
organisms [218]. 

Tigecycline or eravacycline are alternative options for the 
treatment of KPC-producing infections not involving the 
bloodstream or urinary tract (Question 3.9). Their activity is 
independent of the presence or type of carbapenemases. 

Question 3.6: What Are the Preferred Antibiotics for the Treatment of 
Infections Outside of the Urinary Tract Caused by CRE if NDM Production 
is Present? 

Suggested Approach 
Ceftazidime-avibactam in combination with aztreonam, or ce-
fiderocol as monotherapy, are preferred treatment options for 
NDM and other metallo-β-lactamase–producing infections. 

Rationale 
Preferred antibiotic options for NDM-producing Enterobacterales 
(or other metallo-β-lactamases), include ceftazidime-avibactam 
plus aztreonam, or cefiderocol monotherapy [204, 250–257]. 
NDMs hydrolyze penicillins, cephalosporins, and carbapenems, 
but not aztreonam. Although aztreonam is active against 
NDMs, it can be hydrolyzed by ESBLs, AmpC β-lactamases, 
KPCs, or OXA-48–like carbapenemases that are frequently co-
produced by NDM-producing isolates. Avibactam generally re-
mains effective at inhibiting the activity of these latter 
β-lactamase enzymes. Reliable estimates of the percent of 
NDM-producing isolates susceptible to the combination of 
ceftazidime-avibactam and aztreonam are not available because 
of the lack of a standardized testing approach. Although several 
groups have described methods used to test susceptibility with 
this combination of agents [258–265], the CLSI does not cur-
rently endorse a specific approach to test in vitro activity with 
this combination [16]. 

An observational study of 102 adults with bloodstream infections 
caused by metallo-β-lactamase–producing Enterobacterales 
compared the outcomes of 52 patients receiving ceftazidime- 
avibactam in combination with aztreonam versus 50 patients 
receiving a combination of other agents, primarily polymyxin 
or tigecycline-based therapy [255]. Thirty-day mortality was 
19% for the ceftazidime-avibactam/aztreonam group and 44% 
for the alternate arm, highlighting the potential clinical benefit 
with the former. Strategies for administering the combination 
of ceftazidime-avibactam and aztreonam are reviewed in  
Table 1 and Supplementary Material [266–268]. Patients 
should be monitored closely for elevations in liver enzymes 
[269]. In rare situations where cefiderocol or combination ther-
apy with ceftazidime-avibactam and aztreonam is not possible 
(eg, allergy or intolerance), combination therapy with aztreonam 
and meropenem-vaborbactam or imipenem-cilastatin-relebactam 
can be considered, provided OXA-type carbapenemases are not 
present [252, 270]. Clinical data investigating this approach are 
limited [271]. 

A second preferred option for the treatment of NDM and 
other metallo-β-lactamase–producing Enterobacterales is cefi-
derocol. Surveillance data indicate that NDM-producing 
Enterobacterales isolates have a higher cefiderocol MIC90 than iso-
lates producing serine β-lactamases, although this is not always as-
sociated with frank cefiderocol resistance [220, 272]. Cefiderocol 
was active against 58% of 12 international NDM-producing CRE 
isolates [220]. A separate cohort found that cefiderocol was active 
against 83% of 29 NDM-producing CRE isolates [216]. Two clinical 
trials including patients with metallo-β-lactamase–producing infec-
tions (not limited to the Enterobacterales) found that clinical cure 
occurred in 71% (17 of 24) and 40% (4 of 10) of patients receiving 
cefiderocol versus alternate therapy (primarily polymyxin-based 
therapy), respectively [256]. Day 28 mortality occurred in 13% (3 
of 24) and 50% (5 of 10) of patients, respectively [256]. Clinical out-
comes data comparing ceftazidime-avibactam in combination with 
aztreonam versus cefiderocol are not available. 

Tigecycline or eravacycline are alternative options for the 
treatment of NDM-producing infections not involving the 
bloodstream or urinary tract (Question 3.9). Their activity is 
independent of the presence or type of carbapenemases. 

Question 3.7: What are the Preferred Antibiotics for the Treatment of 
Infections Outside of the Urinary Tract Caused by CRE if OXA-48–Like 
Production is Present? 

Suggested Approach 
Ceftazidime-avibactam is the preferred treatment option for 
OXA-48-like–producing infections. Cefiderocol is an alterna-
tive treatment option. 

Rationale 
If an OXA-48-like enzyme is identified in an Enterobacterales 
clinical isolate, ceftazidime-avibactam is preferred [205, 206,   
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273–275]; cefiderocol is an alternative option [276, 277]. 
Meropenem-vaborbactam and imipenem-cilastatin-relebactam 
have limited to no activity against OXA-48-like–producing iso-
lates and are not suggested, even if susceptible in vitro [207–215]. 
Although OXA-48-like–producing isolates are generally expect-
ed to test susceptible to cefiderocol, clinical data on cefiderocol 
treatment of infections by these organisms are limited and the 
panel prefers to reserve their activity for the treatment of 
metallo-β-lactamase–producing organisms and certain nonfer-
menting organisms [276]. 

Tigecycline or eravacycline are alternative options for the 
treatment of OXA-48-like–producing infections not involving 
the bloodstream or urinary tract (Question 3.9). Their activity 
is independent of the presence or type of carbapenemases. 

Question 3.8: What Is the Likelihood of the Emergence of Resistance of CRE 
Isolates to the Newer β-Lactam Agents When Used to Treat CRE 
Infections? 

Suggested Approach 
The emergence of resistance is a concern with all β-lactams 
used to treat CRE infections. Available data suggest the fre-
quency may be highest for ceftazidime-avibactam. 

Rationale 
As with most antibiotic agents, treatment with any β-lactam 
agents active against CRE (ie, ceftazidime-avibactam, meropenem- 
vaborbactam, imipenem-cilastatin-relebactam, or cefiderocol) 
increases the likelihood that subsequent isolates causing infec-
tion will no longer be effectively treated with these agents. The 
most data on the emergence of resistance of novel agents to 
CRE focuses on KPC-producing isolates. The emergence of re-
sistance to ceftazidime-avibactam most commonly occurs be-
cause of mutations in the blaKPC gene translating to amino 
acid changes in the KPC carbapenemase [278–299]. Changes 
in permeability and efflux are the primary drivers of the emer-
gence of resistance to meropenem-vaborbactam [209, 243, 287,  
291, 300–305] and imipenem-cilastatin-relebactam [306–308]. 
Increases in blaKPC copy numbers have been associated with re-
sistance to all these agents [309–311]. 

Diverse mechanisms of resistance to cefiderocol have been 
described both against KPC-producing isolates and other ser-
ine and metallo-β-lactamases–producing Enterobacterales 
[312, 313] including mutations in the TonB-dependent iron 
transport system [314–317], amino acid changes in AmpC 
β-lactamases [181, 182], and increased NDM expression 
[261]. Increasing reports of amino acid insertions in PBP3, 
the active binding site of cefiderocol and aztreonam, are being 
described in NDM-producing E. coli isolates [294, 318–320] 
leaving no available β-lactam treatment options. Such reports 
remain rare in the United States [321]. 

Estimates of the emergence of resistance after clinical expo-
sure to ceftazidime-avibactam and meropenem-vaborbactam 

are approximately 10% to 20% [230, 234, 244, 282] and 3% 
[240, 243, 322], respectively. The most data are available for 
ceftazidime-avibactam, in part because it was the first of the 
novel β-lactam agents active against CRE to receive approval 
from the US Food and Drug Administration (FDA). Limited 
data exist on the frequency of emergence of resistance of 
CRE to imipenem-cilastatin-relebactam and cefiderocol. 

The panel recommends always repeating AST for the newer 
β-lactams when a patient previously infected with a CRE pre-
sents with a sepsis-like picture suggestive of a new or relapsed 
infection. Furthermore, if a patient was recently treated with 
ceftazidime-avibactam and presents with a sepsis-like condi-
tion, the panel suggests considering use of a different novel 
β-lactam agent at least until culture and AST data are available. 
For example, if a patient with a KPC-producing bloodstream 
infection received a treatment course of ceftazidime-avibactam 
1 month earlier and presents to medical care with symptoms 
suggestive of infection, consider administering an agent such 
as meropenem-vaborbactam until organism and AST results 
are available. 

Question 3.9: What Is the Role of Tetracycline Derivatives for the 
Treatment of Infections Caused by CRE? 

Suggested Approach 
Although β-lactam agents remain preferred treatment options 
for CRE infections, tigecycline and eravacycline are alternative 
options when β-lactam agents are either not active or unable to 
be tolerated. The tetracycline derivatives are not suggested for 
the treatment of CRE urinary tract infections or bloodstream 
infections. 

Rationale 
Tetracycline derivatives function independent of the presence 
or type of carbapenemase. More specifically, both carbapenemase- 
producing (eg, KPC, NDM, OXA-48–like carbapenemases) 
and nonproducing CRE may test susceptible to these agents 
[208, 216, 323]. The tetracycline-derivative agents achieve rapid 
tissue distribution following administration, resulting in limit-
ed urine and serum concentrations [324]. Therefore, the panel 
suggests avoiding their use for urinary and bloodstream infec-
tions. Tigecycline or eravacycline can be considered as alterna-
tive options for intra-abdominal infections, skin and soft-tissue 
infections, osteomyelitis, and respiratory infections when opti-
mal dosing is used (Table 1). 

Tigecycline has more published experience available for 
the treatment of CRE infections compared with eravacycline 
[325–328]. A meta-analysis of 15 clinical trials suggested that 
tigecycline monotherapy is associated with higher mortality 
than alternative regimens used for the treatment of pneumonia, 
not exclusively limited to pneumonia caused by the 
Enterobacterales [329]. Subsequent investigations have 
demonstrated that when high-dose tigecycline is prescribed  
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(200 mg IV as a single dose followed 100 mg IV every 
12 hours), mortality differences between tigecycline and 
comparator agents may no longer be evident [330–332]. 
Thus, if tigecycline is prescribed for the treatment of CRE in-
fections, the panel recommends that high dosages be admin-
istered [333] (Table 1). 

Eravacycline MICs are generally 2- to 4-fold lower than tige-
cycline MICs against CRE [334]. The clinical relevance of the 
MIC distributions between these agents is unclear because of 
differences in the PK/PD profile of tigecycline and eravacycline. 
Fewer than 5 patients with CRE infections were included in 
clinical trials that investigated the efficacy of eravacycline 
[325, 335] and postmarketing clinical reports describing its ef-
ficacy for the treatment of CRE infections are limited [336]. 

Limited clinical data are also available investigating the effec-
tiveness of minocycline against CRE infections [337, 338], but 
data suggest a lower proportion of CRE isolates are likely to be 
susceptible to minocycline compared with tigecycline or erava-
cycline [216]. The panel suggests using minocycline with cau-
tion for the treatment of CRE infections. Data evaluating the 
activity of omadacycline, a tetracycline-derivative with both 
an IV and oral formulation, against CRE suggests reduced po-
tency relative to other tetracycline derivatives and an unfavor-
able PK/PD profile (Question 1.3) [63, 339–341]. The panel 
suggests against the use of omadacycline for CRE infections. 

Question 3.10: What Is the Role of Polymyxins for the Treatment of 
Infections Caused by CRE? 

Suggested Approach 
Polymyxin B and colistin are not suggested for the treatment of 
infections caused by CRE. Colistin can be considered as an al-
ternative agent for uncomplicated CRE cystitis. 

Rationale 
Observational and clinical data indicate increased mortality 
and excess nephrotoxicity associated with polymyxin-based 
regimens relative to comparator agents [226–234]. Concerns 
about the clinical effectiveness of polymyxins and accuracy of 
polymyxin susceptibility testing led the CLSI to eliminate a sus-
ceptible category for colistin and polymyxin B [16]. The panel 
suggests that these agents be avoided for the treatment of CRE 
infections, with the exception of colistin as an alternative agent 
against CRE cystitis. Polymyxin B should not be used as treat-
ment for CRE cystitis because of its predominantly nonrenal 
clearance [199]. 

Question 3.11: What Is the Role of Combination Antibiotic Therapy for the 
Treatment of Infections Caused by CRE? 

Suggested Approach 
Combination antibiotic therapy (ie, the use of a β-lactam agent 
in combination with an aminoglycoside, fluoroquinolone, 

tetracycline, or polymyxin) is not suggested for the treatment 
of infections caused by CRE. 

Rationale 
Although empiric combination antibiotic therapy increases the 
likelihood that at least 1 active therapeutic agent for patients at 
risk for CRE infections is being administered, data do not indicate 
that continued combination therapy—once the β-lactam agent 
has demonstrated in vitro activity—offers any additional benefit 
[342]. Rather, the continued use of a second agent increases the 
likelihood of antibiotic-associated adverse events [342]. 

Randomized trial data are not available comparing the novel 
β-lactam agents as monotherapy and as a component of com-
bination therapy (eg, ceftazidime-avibactam vs ceftazidime- 
avibactam and tobramycin). An observational study compared 
the clinical outcomes of 165 patients receiving ceftazidime- 
avibactam and 412 patients receiving ceftazidime-avibactam 
plus a second agent for the treatment of KPC-producing infec-
tions [241]. Thirty-day mortality was essentially identical at ap-
proximately 25% in both study arms. 

Based on available outcomes data, clinical experience, and 
known toxicities associated with aminoglycosides, fluoroquin-
olones, tetracyclines, and polymyxins, the panel does not 
suggest combination therapy for CRE infections when suscept-
ibility to a preferred β-lactam agent has been demonstrated. 

SECTION 4: PSEUDOMONAS AERUGINOSA WITH 
DIFFICULT-TO-TREAT RESISTANCE 

The CDC reports that 32 600 cases of multidrug-resistant 
(MDR)-P. aeruginosa infections occurred in patients hospital-
ized in the United States in 2017, resulting in 2700 deaths [2]. 
MDR- P. aeruginosa is defined as P. aeruginosa not susceptible 
to at least 1 antibiotic in at least 3 antibiotic classes for which 
P. aeruginosa susceptibility is generally expected: penicillins, 
cephalosporins, fluoroquinolones, aminoglycosides, and carba-
penems [343]. In 2018, the concept of “difficult-to-treat” resis-
tance was proposed [344]. In this guidance document, DTR is 
defined as P. aeruginosa exhibiting nonsusceptibility to all of 
the following: piperacillin-tazobactam, ceftazidime, cefepime, 
aztreonam, meropenem, imipenem-cilastatin, ciprofloxacin, 
and levofloxacin. 

MDR-P. aeruginosa or DTR-P. aeruginosa generally evolve 
as a result of an interplay of multiple complex resistance mech-
anisms, including decreased expression of outer membrane 
porins (OprD), increased production of or amino acid substitu-
tions within Pseudomonas-derived cephalosporinase (PDC) en-
zymes (commonly referred to as pseudomonal AmpC enzymes), 
upregulation of efflux pumps (eg, MexAB-OprM), mutations 
in PBP targets, and the presence of expanded-spectrum 
β-lactamases (eg, blaOXA-10) [345, 346]. Carbapenemase produc-
tion is a rare cause of carbapenem resistance in P. aeruginosa  
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isolates in the United States [347, 348] but is identified in up-
wards of 20% of carbapenem-resistant P. aeruginosa in other 
regions of the world, most commonly from the presence of 
blaVIM enzymes [349–352]. There are other β-lactamase en-
zymes rarely identified in P. aeruginosa isolates from patients 
in the United States that may confer elevated MICs to 
β-lactam agents including some novel β-lactam agents (eg, 
Guiana extended-spectrum [GES] beta-lactamase, Vietnamese 
extended-spectrum beta-lactamase [VEB], and Pseudomonas- 
extended resistance [PER] enzymes) [14]. 

Carbapenemase testing for DTR-P. aeruginosa is not as critical 
as carbapenemase testing for CRE clinical isolates in US hospitals. 
However, the panel strongly encourages all clinical microbiology 
laboratories to perform AST for MDR and DTR-P. aeruginosa 
isolates against novel β-lactam agents (ie, ceftolozane-tazobactam, 
ceftazidime-avibactam, imipenem-cilastatin-relebactam, and 
cefiderocol). If AST cannot occur at the local clinical microbi-
ology laboratory, isolates should be sent to a commercial labo-
ratory, local health department, or the CDC for AST testing. 
Although sending out AST may delay the initiation of effective 
antibiotic therapy, it is still preferred over no testing because 
these data can guide treatment of chronic infections and recur-
rent infections. Treatment suggestions for DTR-P. aeruginosa 
infections assume that in vitro activity of preferred and alterna-
tive antibiotics has been demonstrated. 

Question 4.1: What Are Preferred Antibiotics for the Treatment of 
Infections Caused by MDR P. aeruginosa? 

Suggested Approach 
When P. aeruginosa isolates test susceptible to both traditional 
non-carbapenem β-lactam agents (ie, piperacillin-tazobactam, 
ceftazidime, cefepime, aztreonam) and carbapenems, the former 
are preferred over carbapenem therapy. For infections caused by 
P. aeruginosa isolates not susceptible to any carbapenem agent 
but susceptible to traditional β-lactams, the administration of a 
traditional agent as high-dose extended-infusion therapy is sug-
gested, and repeat AST is encouraged. For critically ill patients or 
those with poor source control with P. aeruginosa isolates resis-
tant to carbapenems but susceptible to traditional β-lactams, use 
of a novel β-lactam agent that tests susceptible (eg, ceftolozane- 
tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam) 
is also a reasonable treatment approach. 

Rationale 
In general, when a P. aeruginosa isolate tests susceptible to 
multiple traditional β-lactam agents (ie, piperacillin- 
tazobactam, ceftazidime, cefepime, aztreonam), fluoroquino-
lones (ie, ciprofloxacin, levofloxacin), or carbapenems, the 
panel prefers an agent from the former 2 groups be pre-
scribed over carbapenem therapy in an attempt to preserve 
the activity of carbapenems for future, increasingly 
drug-resistant infections. 

P. aeruginosa not susceptible to a carbapenem agent (eg, 
meropenem or imipenem-cilastatin MICs ≥4 µg/mL) but sus-
ceptible to other traditional non-carbapenem β-lactam agents 
(Table 2) constitute approximately 20% to 60% of carbapenem- 
resistant P. aeruginosa isolates [353–359]. This phenotype is 
generally due to lack of or limited production of OprD, 
which normally facilitates entry of carbapenem agents into 
P. aeruginosa, with or without overexpression of efflux pumps 
[355–358]. Comparative effectiveness studies to guide treat-
ment decisions for infections caused by P. aeruginosa resistant 
to carbapenems but susceptible to traditional non-carbapenem 
β-lactams are not available. When confronted with these sce-
narios, the panel suggests AST to confirm antibiotic MICs. If 
the isolate remains susceptible to a traditional non-carbapenem 
β-lactam (eg, cefepime) on repeat testing, the panel’s preferred 
approach is to administer the non-carbapenem agent as high- 
dose extended-infusion therapy (eg, cefepime 2 g IV every 
8 hours, infused over at least 3 hours) (Table 1). 

An alternative approach is to administer a novel β-lactam 
agent (eg, ceftolozane-tazobactam, ceftazidime-avibactam, 
imipenem-cilastatin-relebactam). This approach is considered 
an alternative and not a preferred option to preserve the effec-
tiveness of novel β-lactams for future, increasingly 
antibiotic-resistant infections. However, for critically ill pa-
tients or those with poor source control, use of a novel 
β-lactam for P. aeruginosa infections resistant to carbapenems 
but susceptible to non-carbapenem β-lactams is a reasonable 
consideration. Regardless of the antibiotic agent administered, 
patients infected with P. aeruginosa should be closely moni-
tored to ensure clinical improvement because P. aeruginosa ex-
hibits an impressive capacity to iteratively express additional 
resistance mechanisms while exposed to antibiotic therapy. 
Clinicians are advised to request repeat AST of subsequent clin-
ical MDR-P. aeruginosa isolates obtained from the same patient 
to monitor for the development of resistance. 

Question 4.2: What Are Preferred Antibiotics for the Treatment of 
Uncomplicated Cystitis Caused by DTR-P. aeruginosa? 

Suggested Approach 
Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem- 
cilastatin-relebactam, and cefiderocol are the preferred treat-
ment options for uncomplicated cystitis caused by DTR- 
P. aeruginosa. A single dose of tobramycin or amikacin is an 
alternative treatment for uncomplicated cystitis caused by 
DTR-P. aeruginosa. 

Rationale 
Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem- 
cilastatin-relebactam, and cefiderocol are preferred treatment 
options for uncomplicated DTR-P. aeruginosa cystitis, based 
on clinical trials showing noninferiority of these agents to 
common comparator agents for the treatment of UTIs  
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[117, 202–204, 360]. Data are insufficient to favor 1 of these 
agents over the others for the treatment of uncomplicated cysti-
tis, and available trials generally do not include patients infected 
by pathogens with DTR phenotypes. Additional information 
comparing these agents is described in Question 4.4. The sug-
gested approach for the treatment of uncomplicated cystitis 
caused by DTR-P. aeruginosa isolates confirmed to produce 
metallo-β-lactamase enzymes (eg, blaVIM) is reviewed in 
Question 4.5. 

A single dose of tobramycin or amikacin is an alternative 
treatment option for uncomplicated cystitis caused by 
DTR-P. aeruginosa. A single IV dose of tobramycin or amika-
cin is likely effective for uncomplicated cystitis because amino-
glycosides are nearly exclusively eliminated by the renal route 
in their active form, with minimal toxicity, but robust trial 
data are lacking [27]. As of January 2023, there are no longer 
susceptibility criteria for gentamicin for P. aeruginosa, and sus-
ceptibility criteria for tobramycin and amikacin have been low-
ered [16] (Table 2). Tobramycin susceptibility criteria are 
available for P. aeruginosa, regardless of source (susceptible 
≤1 µg/mL) [16]. Amikacin susceptibility criteria against P. aer-
uginosa are only available for infections originating from uri-
nary sources (susceptible ≤16 µg/mL) [16]. Plazomicin has 
neither CLSI nor FDA susceptibility criteria against P. aerugi-
nosa. Surveillance studies indicate that plazomicin is unlikely 
to provide any incremental benefit against DTR-P. aeruginosa 
if resistance to all other aminoglycosides is demonstrated [361]. 

Colistin, but not polymyxin B, is an alternate consideration for 
treating DTR-P. aeruginosa cystitis because it converts to its ac-
tive form in the urinary tract [198]. Clinicians should remain 
cognizant of the associated risk of nephrotoxicity. The panel 
does not suggest the use of oral fosfomycin for DTR-P. aerugino-
sa cystitis because it is associated with a high likelihood of clinical 
failure [19, 362]. This is in part from the presence of the fosA 
gene, which is intrinsic to P. aeruginosa [28]. 

Question 4.3: What Are Preferred Antibiotics for the Treatment of 
Pyelonephritis and Complicated Urinary Tract Infections Caused by 
DTR-P. aeruginosa? 

Suggested Approach 
Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem- 
cilastatin-relebactam, and cefiderocol are the preferred treat-
ment options for pyelonephritis and cUTI caused by DTR-P. 
aeruginosa. 

Rationale 
Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem- 
cilastatin-relebactam, and cefiderocol are preferred treatment 
options for DTR-P. aeruginosa pyelonephritis and cUTI, based 
on clinical trials showing noninferiority of these agents to com-
mon comparator agents [117, 202–204, 360]. Data are insuffi-
cient to favor 1 of these agents over the others for the 

treatment of pyelonephritis and cUTI. Available trials generally 
do not include patients infected by pathogens with DTR pheno-
types. Additional information comparing these agents is 
described in Question 4.4. The suggested approach for the 
treatment of pyelonephritis and cUTI cystitis caused by DTR-P. 
aeruginosa isolates confirmed to produce metallo-β-lactamase 
enzymes (eg, blaVIM) is reviewed in Question 4.5. In patients in 
whom the potential for nephrotoxicity is deemed acceptable, 
once-daily tobramycin or amikacin are alternative options 
(Question 4.2) [39]. Changes in the aminoglycoside susceptibility 
criteria that were implemented in January 2023 are reviewed in 
Question 4.2. 

Question 4.4: What Are Preferred Antibiotics for the Treatment of 
Infections Outside of the Urinary Tract Caused by DTR-P. aeruginosa? 

Suggested Approach 
Ceftolozane-tazobactam, ceftazidime-avibactam, and imipenem- 
cilastatin-relebactam are preferred options for the treatment 
of infections outside of the urinary tract caused by DTR-P. 
aeruginosa. Cefiderocol is an alternative treatment option 
for infections outside of the urinary tract caused by DTR-P. 
aeruginosa. 

Rationale 
Ceftolozane-tazobactam, ceftazidime-avibactam, and imipenem- 
cilastatin-relebactam are preferred options for the treatment of 
DTR-P. aeruginosa infections outside of the urinary tract, based 
on in vitro activity [246, 248, 306, 363–404], observational studies 
[405–410], and clinical trial data [117, 229, 411–417]. The vast 
majority of patients in clinical trials receiving newer β-lactam 
agents were not infected with DTR-P. aeruginosa. Comparative 
effectiveness studies comparing novel agents with each other 
(eg, ceftolozane-tazobactam vs ceftazidime-avibactam) are lack-
ing. Rather, available studies focus on comparing novel agents 
to older agents (eg, ceftolozane-tazobactam vs polymyxins). 
The suggested approach for the treatment of infections outside 
of the urinary tract caused by DTR-P. aeruginosa isolates con-
firmed to produce metallo-β-lactamase enzymes (eg, blaVIM) is 
reviewed in Question 4.5. 

Summarizing international surveillance data, ceftolozane- 
tazobactam [363, 365, 366, 368–378, 389], ceftazidime-avibactam 
[364, 377–389], and imipenem-cilastatin-relebactam [246, 248,  
306, 389–404] are active against approximately 76%, 74%, and 
69% of carbapenem-resistant P. aeruginosa isolates, respectively, 
with lower percent susceptibilities exhibited by isolates from pa-
tients with cystic fibrosis [418, 419]. Available surveillance data 
generally represent periods before the novel agents were used 
clinically and likely overestimate susceptibility percentages ob-
served in clinical practice. Regional differences in susceptibility 
estimates across the newer agents exist. The panel suggests always 
obtaining AST results for DTR-P. aeruginosa infections to guide 
treatment decisions.  
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Ceftolozane and ceftazidime have a similar structure; howev-
er, ceftolozane is less affected by PDC hydrolysis and porin loss 
than ceftazidime [420, 421]. Ceftolozane does not rely on an in-
hibitor to restore susceptibility to an otherwise inactive 
β-lactam agent (ie, ceftolozane has independent activity against 
DTR-P. aeruginosa and does not need to rely on tazobactam to 
maintain its activity against DTR-P. aeruginosa), which may 
explain its slightly higher likelihood of activity against DTR-P. 
aeruginosa compared with other novel β-lactam-β-lactamase 
inhibitors. By definition, neither ceftazidime nor imipenem 
are active against DTR-P. aeruginosa. Avibactam and relebac-
tam expand activity of these agents mainly through inhibition 
of PDCs [113]. 

The panel does not suggest testing meropenem-vaborbactam 
activity against DTR-P. aeruginosa isolates. Vaborbactam only 
marginally expands the activity of meropenem against DTR-P. 
aeruginosa. There are no CLSI or FDA breakpoints for 
meropenem-vaborbactam against P. aeruginosa. Some P. aeru-
ginosa isolates may appear susceptible to meropenem- 
vaborbactam but not meropenem is not, if applying the CLSI 
Enterobacterales breakpoint of 8 µg/mL to P. aeruginosa iso-
lates. This is likely an artifact of meropenem-vaborbactam be-
ing standardly administered as 2 g IV every 8 hours, infused 
over 3 hours. Meropenem breakpoints (ie ≤ 2 µg/mL) are 
based on a dosage regimen of 1 g IV administered every 
8 hours, as a 30-minute infusion [16]. If meropenem is infused 
as 2 g IV every 8 hours over 3 hours, it would be expected to 
achieve a similar likelihood of target attainment as meropenem- 
vaborbactam (ie, approximately 8 µg/mL) [422]. 

Clinical trials comparing effectiveness across the newer 
β-lactam agents are not available. Observational data and sub-
group analysis from clinical trial data provide insights into the 
effectiveness of the newer agents compared with traditional 
antipseudomonal regimens, with studies generally focusing 
on MDR-P. aeruginosa and not DTR-P. aeruginosa. An obser-
vational study including 200 patients with MDR-P. aeruginosa 
infections compared the outcomes of patients receiving 
ceftolozane-tazobactam versus polymyxin- or aminoglycoside- 
based therapy [405]. Favorable clinical outcomes were observed 
in 81% of patients receiving ceftolozane-tazobactam versus 
61% of patients receiving polymyxin- or aminoglycoside-based 
therapy; this difference achieved statistical significance. 
Rigorous data investigating the activity of ceftazidime- 
avibactam against comparators are lacking. However, pooled 
data from 5 trials explored differences in clinical responses 
for patients with MDR-P. aeruginosa infections receiving 
ceftazidime-avibactam versus more traditional regimens with 
a favorable clinical response observed in 57% (32 of 56 patients) 
versus 54% (21 of 39) of patients in the 2 treatment arms, re-
spectively [423]. Only 66% of isolates were susceptible to 
ceftazidime-avibactam, making interpretation of the results 
challenging [423]. A clinical trial including 24 patients infected 

with imipenem-nonsusceptible P. aeruginosa identified a favor-
able clinical response in 81% of patients receiving imipenem- 
cilastatin-relebactam compared with 63% receiving imipenem- 
cilastatin in combination with colistin [229]. Although not 
achieving statistical significance, potentially because of the 
small sample size, the numerical differences suggest improved 
outcomes with use of imipenem-cilastatin-relebactam over 
more traditional regimens. 

Cefiderocol is suggested as an alternative treatment option 
for DTR-P. aeruginosa infections outside of the urine. Combining 
data from 1500 carbapenem-nonsusceptible P. aeruginosa isolates 
in surveillance studies, more than 97% of isolates exhibited suscept-
ibility to cefiderocol (ie, MICs ≤4 µg/mL) [115, 183, 220, 424–428]. 
Similar to the novel β-lactam-β-lactamase inhibitors, percent 
susceptibility to cefiderocol is likely to be reduced after wide-
spread use of this agent. 

A clinical trial compared the outcomes of patients with infec-
tions resulting from carbapenem-resistant organisms treated 
with cefiderocol versus alternative therapy, which largely con-
sisted of polymyxin-based therapy [204]. The trial included 
22 unique patients with 29 carbapenem-resistant P. aeruginosa 
infections [204]. Mortality at the end of therapy was 18% in 
both the cefiderocol and alternative therapy arms for patients 
infected with P. aeruginosa. This trial suggests that cefiderocol 
performs as well as agents that were previously the mainstay of 
treatment against DTR-P. aeruginosa in the past (ie, combina-
tions of extended-infusion meropenem, polymyxins, and ami-
noglycosides) but may not be associated with improved 
outcomes, as has been observed with some of the newer 
β-lactam-β-lactamase inhibitors [229, 405]. Despite the high 
DTR-P. aeruginosa susceptibility to cefiderocol, the panel sug-
gests cefiderocol as an alternative option when inactivity, intol-
erance, or unavailability precludes the use of the newer 
β-lactam-β-lactamase inhibitors. 

Question 4.5: What Are Preferred Antibiotics for the Treatment of 
DTR-P. aeruginosa That Produce Metallo-β-Lactamase Enzymes? 

Suggested Approach 
For patients infected with DTR-P. aeruginosa isolates that are 
metallo-β-lactamase producing, the preferred treatment is 
cefiderocol. 

Rationale 
P. aeruginosa harboring metallo-β-lactamases remain uncom-
mon in the United States [347]. Such isolates are more common 
in other regions of the world [248, 429–431]. DTR-P. aerugino-
sa isolates exhibiting resistance to all available β-lactam- 
β-lactamase inhibitors (ie, ceftolozane-tazobactam, ceftazidime- 
avibactam, and imipenem-cilastatin-relebactam) should raise 
suspicion for possible metallo-β-lactamase production. Metallo- 
β-lactamase-producing P. aeruginosa isolates generally remain 
susceptible to cefiderocol [256, 432].  
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Clinical data on the use of cefiderocol as a treatment for 
metallo-β-lactamase–producing P. aeruginosa are limited. 
Seven patients with metallo-β-lactamase–producing P. aerugi-
nosa infections were included in 2 cefiderocol clinical trials 
[256]. Although numbers are too small to draw meaningful 
conclusions, 71% (5 of 7 patients) receiving cefiderocol 
achieved clinical cure compared to none of the 5 patients in 
the alternative therapy arm, which generally consisted of 
polymyxin-based therapy [256]. 

In contrast to metallo-β-lactamase-producing Enterobacterales 
infections, the combination of ceftazidime-avibactam plus 
aztreonam (using data extrapolated from aztreonam-avibactam) 
appears less likely to provide an incremental benefit over aztreo-
nam alone for metallo-β-lactamase–producing P. aeruginosa in-
fections [349, 433]. There are isolated case reports in the 
literature suggesting potential clinical success with this combina-
tion [257, 434]. It is theoretically possible that simultaneous inhi-
bition of more than 1 PBP by ceftazidime (PBP1a/1b, PBP3) and 
aztreonam (PBP3) may add some benefit over aztreonam alone. 
Although avibactam may help reduce the effectiveness of PDC en-
zymes, the multiple other mechanisms generally present in 
DTR-P. aeruginosa are likely to render aztreonam ineffective. 
Extrapolating data from aztreonam-avibactam, it is anticipated 
that ceftazidime-avibactam and aztreonam have activity against 
<10% of metallo-β-lactamase–producing P. aeruginosa [433]. 

Question 4.6: What is the Likelihood of the Emergence of Resistance of 
DTR-P. aeruginosa Isolates to the Newer β-Lactam Agents When Used to 
Treat DTR-P. aeruginosa Infections? 

Suggested Approach 
The emergence of resistance is a concern with all β-lactams 
used to treat DTR-P. aeruginosa infections. Available data suggest 
the frequency may be the highest for ceftolozane-tazobactam and 
ceftazidime-avibactam. 

Rationale 
As with most antibiotic agents, treatment of DTR-P. aeruginosa 
with any of the newer β-lactam agents (ie, ceftolozane- 
tazobactam, ceftazidime-avibactam, imipenem-cilastatin- 
relebactam, or cefiderocol) increases the likelihood that subse-
quent infections will no longer be effectively treated with these 
agents. The emergence of resistance to ceftolozane-tazobactam 
most commonly occurs because of amino acid substitutions, in-
sertions, or deletions in PDCs [367, 421, 435–446]. These alter-
ations occur most commonly in or adjacent to a particular 
region of the PDC known as the “omega loop.” Similarly, ac-
quired resistance of P. aeruginosa to ceftazidime-avibactam is 
most frequently the result of alterations in PDCs [435, 437,  
438, 440, 443, 445–448]. 

Mechanisms contributing to P. aeruginosa resistance to 
imipenem-cilastatin-relebactam are less clear and are generally 
presumed to be related to increased production of PDCs in 

combination with loss of OprD and overexpression of efflux 
pumps (eg, MexAB-OprM and/or MexEF-OprN) [306, 449,  
450]. Several diverse mechanisms of P. aeruginosa resistance 
to cefiderocol have been described [313] including mutations 
in the TonB-dependent iron transport system [314–316, 451] 
or amino acid changes in PDCs [451, 452]. 

Based on available data thus far, the emergence of resistance 
of P. aeruginosa to novel β-lactams appears most concerning 
for ceftolozane-tazobactam and ceftazidime-avibactam. 
Cross-resistance between these agents is high because of struc-
tural similarities. In a cohort of 28 patients with DTR-P. aeru-
ginosa infections treated with ceftolozane-tazobactam, 50% of 
patients were infected with subsequent DTR-P. aeruginosa iso-
lates no longer susceptible to ceftolozane-tazobactam [446]. 
Remarkably, more than 80% of patients with index isolates sus-
ceptible to ceftazidime-avibactam had subsequent isolates with 
high-level resistance to ceftazidime-avibactam after ceftolozane- 
tazobactam exposure and in the absence of ceftazidime-avibactam 
exposure. Another cohort study including 23 patients with in-
dex and subsequent P. aeruginosa isolates after ceftolozane- 
tazobactam described a similar experience [445]. Treatment- 
emergent PDC changes were identified in 79% of paired 
isolates. 

Limited data on the frequency of emergence of resistance to 
imipenem-cilastatin-relebactam exist. However, 1 report iden-
tified the emergence of nonsusceptibility to this agent in 26% (5 
of 19) of patients receiving imipenem-cilastatin-relebactam for 
the treatment of P. aeruginosa infections [449]. Similarly, esti-
mates of the frequency of the emergence of resistance of P. aer-
uginosa to cefiderocol because its clinical introduction are 
incomplete but in a clinical trial, 3 of 12 carbapenem-resistant 
isolates had at least 4-fold increases in cefiderocol MICs 
(though not necessarily frank resistance) after exposure to 
this agent [204]. 

The panel suggests always repeating antibiotic susceptibility 
testing for the newer β-lactams when a patient previously in-
fected with a DTR-P. aeruginosa presents with a sepsis-like pic-
ture suggestive of a new or relapsed infection. Furthermore, if a 
patient was recently treated with ceftolozane-tazobactam or 
ceftazidime-avibactam and presents to medical care with symp-
toms of recurrent infection, the panel suggests considering use 
of imipenem-cilastatin-relebactam or cefiderocol, particularly 
if 1 of these agents tested susceptible previously, at least until 
culture and AST data are available. 

Question 4.7: What Is the Role of Combination Antibiotic Therapy for the 
Treatment of Infections Caused by DTR-P. aeruginosa? 

Suggested Approach 
Combination antibiotic therapy is not suggested for infections 
caused by DTR-P. aeruginosa if susceptibility to ceftolozane- 
tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam, 
or cefiderocol has been confirmed.  
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Rationale 
Although empiric combination antibiotic therapy (eg, the 
addition of tobramycin to a β-lactam agent) to broaden the 
likelihood of at least 1 active agent for patients at risk for 
DTR-P. aeruginosa infections is reasonable, data do not in-
dicate that continued combination therapy—once the 
β-lactam agent has demonstrated in vitro activity—offers 
any additional benefit over monotherapy with the β-lactam 
antibiotic [342]. Rather, the continued use of a second agent 
increases the likelihood of antibiotic-associated adverse 
events [342]. 

Clinical trials comparing ceftolozane-tazobactam, ceftazidime- 
avibactam, imipenem-cilastatin-relebactam, or cefiderocol as 
monotherapy and as a component of combination therapy 
are not available (eg, ceftazidime-avibactam vs ceftazidime- 
avibactam and tobramycin). Based on toxicities associated with 
aminoglycosides and polymyxins and previous clinical outcomes 
data not demonstrating a benefit with the use of combination 
therapy for P. aeruginosa infections [342], the panel does not 
suggest that combination therapy be routinely administered 
for DTR-P. aeruginosa infections when susceptibility to a pre-
ferred β-lactam agent has been demonstrated. 

If no preferred agent demonstrates activity against DTR-P. 
aeruginosa, tobramycin (if susceptibility is demonstrated) can 
be considered in combination with either ceftolozane-tazobactam, 
ceftazidime-avibactam, imipenem-cilastatin-relebactam, or cefi-
derocol, preferentially selecting the β-lactam agent for which the 
MIC is closest to its susceptibility breakpoint. For example, if 
ceftolozane-tazobactam and ceftazidime-avibactam MICs against 
a DTR-P. aeruginosa isolate are both >128/4 mcg/mL (highly 
resistant) and the imipenem-cilastatin-relebactam MIC is 4/ 
4 µg/mL (intermediate category), imipenem-cilastatin-relebac-
tam in combination with tobramycin is favored. Data are lack-
ing that demonstrate a benefit to this approach and it should be 
considered as a last resort. This approach is suggested because it 
may increase the likelihood that at least 1 active agent is being 
included in the treatment regimen. 

If tobramycin does not test susceptible, polymyxin B can be 
considered in combination with a novel β-lactam. Polymyxin B 
is preferred over colistin for non-UTIs because (1) it is not ad-
ministered as a prodrug and therefore can achieve more reliable 
plasma concentrations than colistin and (2) it has a reduced 
risk of nephrotoxicity, although limitations across studies pre-
clude accurate determination of the differential risk of nephro-
toxicity [453–458]. 

Question 4.8: What Is the Role of Nebulized Antibiotics for the Treatment of 
Respiratory Infections Caused by DTR-P. aeruginosa? 

Suggested Approach 
The panel does not suggest the use of nebulized antibiotics for 
the treatment of respiratory infections caused by DTR-P. 
aeruginosa. 

Rationale 
There have been conflicting findings for the clinical effectiveness 
of nebulized antibiotics for the treatment of gram-negative pneu-
monia in observational studies [459–486]. At least 3 clinical trials 
investigated the outcomes of patients with gram-negative 
ventilator-associated pneumonia comparing nebulized antibiotics 
versus placebo. All 3 trials allowed for the use of systemic antibi-
otics at the discretion of the treating clinician. In brief, 1 trial com-
pared the outcomes of 100 adults with pneumonia (34% caused by 
P. aeruginosa) treated with nebulized colistin versus placebo [487]; 
a second trial compared the outcomes of 142 adults with pneumo-
nia (22% caused by P. aeruginosa) treated with nebulized amika-
cin/fosfomycin versus placebo [488]; and the third trial compared 
the outcomes of 508 adults with pneumonia (32% caused by 
P. aeruginosa) treated with nebulized amikacin versus placebo 
[489]. None of the 3 clinical trials demonstrated improved clinical 
outcomes or a survival benefit with the use of nebulized antibiotics 
compared with placebo for the treatment of ventilator-associated 
pneumonia, including in a subgroup analyses of patients with 
drug-resistant pathogens [487–489]. A meta-analysis of 13 trials 
including 1733 adults with ventilator-associated pneumonia indi-
cated that the addition of nebulized antibiotics was associated with 
at least partial resolution of clinical symptoms of infection com-
pared with the control group; however, there was significant het-
erogeneity among the pathogens involved and the definition of 
clinical response across studies [490]. No survival benefit, reduction 
in intensive care unit length of stay, or reduction in ventilator days 
was observed in patients receiving nebulized antibiotics [490]. 

Reasons for the lack of clear clinical benefit with nebulized 
antibiotics in available trials are unclear. In a PK/PD modeling 
study, aerosolized delivery of the prodrug of colistin to critically 
ill patients achieved high active drug levels in epithelial lining 
fluid of the lungs [491]. However, it is likely that nebulized an-
tibiotics do not achieve sufficient penetration and/or distribu-
tion throughout lung tissue to exert significant bactericidal 
activity [492], likely due in part to the use of parenteral formu-
lations not specifically designed for inhalation in suboptimal 
delivery devices such as jet nebulizers [493, 494]. Professional 
societies have expressed conflicting views regarding the role 
of nebulized antibiotics as adjunctive therapy to IV antibiotics 
[495–497]. The panel suggests against the use of nebulized an-
tibiotics as adjunctive therapy for DTR-P. aeruginosa pneumo-
nia because of the lack of benefit observed in clinical trials, 
concerns regarding unequal distribution in infected lungs, 
and concerns for respiratory complications such as broncho-
constriction with use of aerosolized antibiotics [498]. 

SECTION 5: CARBAPENEM-RESISTANT 
ACINETOBACTER BAUMANNII 

Carbapenem-resistant Acinetobacter baumannii infections pose 
significant challenges in healthcare settings [499, 500]. In this  

AMR Treatment Guidance • CID • 25  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciad428/7226183 by guest on 02 O

ctober 2023



guidance document, for simplicity, we will use the term CRAB, al-
though we recognize that a laboratory may not be able to accurate-
ly separate carbapenem-resistant A. baumannii from other species 
within the baumannii and calcoaceticus complexes [501]. 

The management of CRAB infections is difficult for several 
reasons. First, CRAB is most commonly recovered from respi-
ratory specimens or wounds. Therefore, it is not always clear if 
an isolate is a colonizing organism in patients who are ill for 
reasons attributable to their underlying host status (eg, patients 
requiring mechanical ventilation, patients with extensive 
burns) or if CRAB represents a true pathogen capable of con-
tributing to excess mortality, leading to uncertainty about the 
need for antibiotic therapy. For the same reason, it is challeng-
ing to determine if poor clinical outcomes are attributable to 
suboptimal antibiotic therapy or to underlying host factors. 

Second, once A. baumannii exhibits carbapenem resistance, 
it generally has acquired resistance to most other antibiotics ex-
pected to be active against wild-type A. baumannii, leaving few 
remaining therapeutic options. The production of OXA carba-
penemases (eg, OXA-24/40, OXA-23) mediate resistance to 
β-lactams [501, 502]. CRAB isolates may also produce 
metallo-β-lactamases and additional serine carbapenemases 
(eg, A. baumannii–derived cephalosporinases), further limiting 
the utility of common β-lactam agents. Sulbactam resistance is 
not completely understood but appears to be driven primarily 
via mutations targeting PBPs (ie, PBP1a/1b and PBP3); β-lactamase 
production may also contribute [503–505]. Aminoglycoside 
modifying enzymes or 16S rRNA methyltransferases generally 
preclude aminoglycosides as treatment options for CRAB 
[506–508]. Mutations in the chromosomally-encoded quinolone 
resistance determining regions generally mediate resistance to 
fluoroquinolones [507]. 

Finally, there is no clear “standard of care” antibiotic regi-
men for CRAB infections against which to estimate the effec-
tiveness of various treatment regimens. Robust comparative 
effectiveness studies between commonly used agents are limit-
ed. Data supporting a prioritization of specific agents with 
CRAB activity or the additive benefit of commonly used com-
bination regimens for CRAB infections remain incomplete. 
This guidance document focuses on the treatment of moderate- 
severe CRAB infections. 

Question 5.1: What Is the General Approach for the Treatment of Infections 
Caused by CRAB? 

Suggested Approach 
The use of high-dose ampicillin-sulbactam (total daily dose of 
6–9 g of the sulbactam component) in combination with at least 
1 other agent is suggested for the treatment of CRAB infections. 

Rationale 
Combination therapy with at least two agents is suggested for 
the treatment of CRAB infections, at least until an appropriate 

clinical response is observed, given the limited clinical data sup-
porting the effectiveness of any single antibiotic agent. The 
panel suggests high-dose ampicillin-sulbactam (total daily 
dose of 6–9 g of the sulbactam component) be included as a 
component of the combination therapy regimen. Combination 
therapy is advised even though only 1 of 8 clinical trials found im-
proved clinical outcomes with the use of combination antibiotic 
therapy for CRAB infections [509–515] (Question 5.2). 
Notably, the clinical trial that demonstrated any benefit with 
combination therapy was the only 1 that included high-dose 
ampicillin-sulbactam in the combination therapy arm [514]. 

Sulbactam’s unique activity against A. baumannii isolates 
has been observed through in vitro studies [516–518], animal 
models [519], and clinical outcomes data [514, 520–523], as 
described in Question 5.3. Insufficient data exist to determine 
if standard-dose ampicillin-sulbactam and high-dose 
ampicillin-sulbactam have equivalent efficacy for CRAB in-
fections caused by isolates susceptible to ampicillin- 
sulbactam. The panel favors high-dose ampicillin-sulbactam, 
given the theoretical benefit of saturating sulbactam’s PBP 
targets with higher dosages of sulbactam and the potential in-
accuracies with commonly used approaches for ampicillin- 
sulbactam AST testing for CRAB [524, 525]. When nonsus-
ceptibility to ampicillin-sulbactam is demonstrated, high- 
dose ampicillin-sulbactam may remain an effective treatment 
option [520, 526, 527]. 

Additional agents that can be considered as components of 
combination regimens for the treatment of CRAB infections in-
clude polymyxin B (Question 5.4), minocycline (Question 
5.5), tigecycline (Question 5.5), or cefiderocol (Question 
5.6). Fosfomycin and rifampin are not suggested as compo-
nents of combination therapy [511, 513, 515] (Question 5.2, 
Question 5.8). Because 2 large clinical trials have not demon-
strated a benefit with the use of high-dose extended-infusion 
carbapenem therapy for the treatment of CRAB infections 
[510, 528], meropenem or imipenem-cilastatin are not suggest-
ed as components of CRAB therapy (Question 5.7). The panel 
also does not suggest the use of nebulized antibiotics as adjunc-
tive therapy for CRAB pneumonia because of the lack of benefit 
observed in clinical trials [487–489], concerns regarding un-
equal distribution in infected lungs, and the potential for respi-
ratory complications such as bronchoconstriction [492–494,  
498] (Question 5.9). 

Question 5.2: What Is the Role of Combination Antibiotic Therapy for the 
Treatment of Infections Caused by CRAB? 

Suggested Approach 
Combination therapy with at least 2 active agents, whenever 
possible, is suggested for the treatment of CRAB infections, 
at least until clinical improvement is observed, because of 
the limited clinical data supporting any single antibiotic 
agent.  
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Rationale 
Combination therapy is suggested for the treatment of CRAB 
infections, even if a single agent demonstrates activity. In situ-
ations in which prolonged durations of therapy may be needed 
(eg, osteomyelitis), step-down therapy to a single active agent 
can be considered. In vitro and animal studies have had con-
flicting findings, but several investigations indicate increased 
bacterial killing with various combination regimens [529– 
537]. There are many observational studies evaluating the 
role of combination therapy versus monotherapy for the treat-
ment of CRAB infections with differing results [527, 537–557]. 
The heterogeneity in patient populations, infectious sources, 
inclusion of colonizing isolates, variation in antibiotics and 
dosages used, small numbers, and imbalances between treat-
ment arms makes interpretation of a number of these studies 
challenging. 

At least 8 trials have investigated the role of combination 
therapy for CRAB infections and only 1 of the 8 trials indicated 
a potential benefit with combination therapy [510–516, 528]. 
Of note, because of inconsistent and unclear colistin dosing re-
ported in studies, the panel elected not to report colistin dosing 
used in individual trials. None of the 8 trials that included a 
polymyxin arm investigated the role of polymyxin B, which 
has a more favorable PK profile than colistin [199]. Following 
is a summary of the 8 trials, a number of which are limited 
by small sample sizes. 

A trial including 210 intensive care unit patients with inva-
sive CRAB infections compared the outcomes of patients re-
ceiving colistin alone versus colistin in combination with 
rifampicin (known in the United States as rifampin) and found 
no difference in 30-day mortality, with 43% mortality in both 
study arms [512]. A second trial including 43 patients with 
CRAB pneumonia also compared colistin monotherapy and 
colistin in combination with rifampin [513]. In-hospital mor-
tality was 73% in the colistin group and 62% in the colistin- 
rifampin group, not reaching statistical significance. A third 
study randomized 9 patients with colistin-resistant A. bauman-
nii (carbapenem susceptibility status not described) and found 
no difference in clinical response between the colistin and co-
listin plus rifampin arms (80% vs 67%, respectively) [515]. 

A fourth trial including patients with a variety of CRAB in-
fections randomized 94 patients to receive colistin alone or co-
listin with fosfomycin [511]. Mortality within 28 days was 57% 
versus 47% and clinical failure was 45% versus 40% in the co-
listin monotherapy and colistin-fosfomycin arms, respectively. 
IV fosfomycin is not currently available in the United States, 
making the results of this trial of limited relevance to this guid-
ance document. 

Two large trials evaluated the role of colistin monotherapy 
versus colistin in combination with meropenem [510, 558]. In 
the first study, 312 patients with CRAB bacteremia, pneumonia, 
or UTIs were randomized to colistin alone versus colistin plus 

meropenem (2 g IV every 8 hours as a 3-hour infusion) [510]. 
No differences in 28-day mortality (46% vs 52%) or clinical fail-
ure (83% vs 81%) were observed between the groups [510]. The 
second trial included 329 patients with drug-resistant A. bau-
mannii bloodstream infections or pneumonia randomized to co-
listin alone compared with colistin in combination with 
meropenem (1 g IV every 8 hours as a 30-minute infusion) 
[558]. The 28-day mortality was 46% versus 42% and clinical fail-
ure was 68% versus 60% in the colistin monotherapy and com-
bination therapy arms, respectively [558]. For both trials, the 
addition of meropenem to colistin did not improve clinical out-
comes in patients with severe CRAB infections. 

A seventh, open-label trial compared the outcomes of 47 
patients with CRAB pneumonia randomized to meropenem/ 
colistin and meropenem/ampicillin-sulbactam (total daily 
dose of 6 g of the sulbactam component) for a 14-day course 
[559]. Twenty-eight-day clinical response was similar in both 
groups at 75% versus 70%. 

The eighth trial included 39 CRAB pneumonia patients, with 
clinical isolates demonstrating susceptibility to both colistin 
and sulbactam. Patients were randomized to colistin mono-
therapy versus colistin in combination with high-dose sulbac-
tam (total daily dose of 8 g of the sulbactam component) 
[514]. Clinical improvement by day 5 was observed in 16% 
and 70% of patients in the colistin versus colistin-sulbactam 
arms, respectively, achieving statistical significance. Investigators 
were unblinded to treatment assignment. Moreover, patients 
were allowed to transition to other antibiotics after day 5, pre-
cluding an accurate comparison of 28-day mortality or clinical 
failure between the groups. 

Although only 1 of 8 clinical trials demonstrated any statisti-
cally significant benefit with combination therapy for CRAB in-
fections, the panel favors the use of combination therapy for 
CRAB infections for the following reasons: (1) there is a lack 
of robust clinical data supporting the treatment of CRAB infec-
tions with any single agent demonstrating in vitro activity 
against CRAB and the use of 2 agents may increase the likeli-
hood that at least 1 active agent is being administered 
(Questions 5.3 to 5.6); (2) high bacterial burdens are expected 
with CRAB infections because of almost-universal delays in ini-
tiating effective therapy as common empiric antibiotic regi-
mens are generally not active against CRAB; and (3) antibiotics 
that initially appear active against CRAB may rapidly develop re-
sistance so combination therapy increases the likelihood that at 
least 1 active agent is being administered. 

Potential options for consideration as components of combi-
nation therapy in addition to high-dose ampicillin-sulbactam 
include tetracycline derivatives (with the most experience avail-
able for minocycline, followed by tigecycline, and virtually no 
clinical data available for eravacycline or omadacycline), poly-
myxin B, or cefiderocol (Questions 5.3 to 5.6). The panel sug-
gests ampicillin-sulbactam as a component of combination  

AMR Treatment Guidance • CID • 27  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciad428/7226183 by guest on 02 O

ctober 2023



therapy, even when resistance to this agent has been demon-
strated (Question 5.3). The combination of meropenem and 
colistin (or polymyxin B), without the addition of a third agent, 
is not suggested for the treatment of CRAB infections based on 
the results of 2 clinical trials [510, 528]; supportive data for this 
combination are generally limited to in vitro studies [516–518] 
(Question 5.7). The panel does not consider the available evi-
dence sufficient to suggest fosfomycin or rifampin as compo-
nents of combination therapy (Question 5.8) [511, 513, 515]. 

Question 5.3: What Is the Role of Ampicillin-Sulbactam for the Treatment of 
Infections Caused by CRAB? 

Suggested Approach 
High-dose ampicillin-sulbactam is suggested as a component 
of combination therapy for CRAB, regardless of whether sus-
ceptibility has been demonstrated. 

Rationale 
Sulbactam is a competitive, irreversible β-lactamase inhibitor 
that, in high doses, saturates PBP1a/1b and PBP3 of A. bau-
mannii isolates [503, 560]. Sulbactam’s unique activity against 
A. baumannii isolates has been demonstrated through in vitro 
studies [516–518], animal models [519], and clinical outcomes 
data [514, 520–523]. The panel suggests high-dose ampicillin- 
sulbactam (total daily dose of 6–9 g of the sulbactam compo-
nent) as a component of combination therapy for CRAB infec-
tions (Table 1). 

Ampicillin-sulbactam uses a 2:1 formulation; for example, 
3 g of ampicillin-sulbactam comprises 2 g of ampicillin and 
1 gr of sulbactam. Ampicillin-sulbactam total daily dosages of 
18 to 27 g (equivalent to 6–9 g of sulbactam) as extended or 
continuous infusions are suggested (eg, 9 g [3 g of sulbactam] 
IV every 8 hours infused over 4 hours) [514, 516, 517, 520,  
561]. Fewer than 50% of CRAB isolates test susceptible 
to ampicillin-sulbactam [562, 563]. When nonsusceptibility 
to  ampicillin-sulbactam is demonstrated, the panel believes 
ampicillin-sulbactam may still remain an effective treatment 
option based on the potential for sulbactam to saturate altered 
PBP targets [516, 520, 526, 527]. 

Two meta-analyses have evaluated observational and clinical 
trial data for various treatment regimens against CRAB infec-
tions [522, 523]. A meta-analysis published in 2021 included 
18 studies and 1835 patients and found that ampicillin- 
sulbactam (total daily dose of at least 6 g of the sulbactam com-
ponent) in combination with a second agent was the most effec-
tive regimen to reduce mortality in critically ill patients infected 
with CRAB [522]. Moreover, nephrotoxicity was less apparent 
with sulbactam-based regimens compared with polymyxin- 
based regimens. An earlier meta-analysis published in 2017 in-
cluded 23 observational studies or clinical trials and 2118 pa-
tients with CRAB infections [523]. This analysis identified 
sulbactam as having the greatest impact on reducing mortality 

when evaluating sulbactam-based, polymyxin-based, or 
tetracycline-based regimens. A comparison of adverse events 
was not undertaken [523]. 

As described in Question 5.2, a clinical trial including 39 pa-
tients with CRAB pneumonia (with clinical isolates susceptible 
to both colistin and sulbactam) identified clinical improvement 
by day 5 in 16% and 70% of patients randomized to colistin 
monotherapy versus colistin in combination with high-dose 
sulbactam (total daily dose of at least 8 g of the sulbactam com-
ponent) [514]. This trial had a number of limitations including 
small sample size, the open-label design may have led to biased 
outcome assignment, and an appropriate evaluation of long- 
term outcomes could not be undertaken as patients could 
transition to other agents after day 5. These limitations not-
withstanding, this trial identified clinical improvement with a 
colistin-sulbactam combination for the treatment of CRAB 
infections. 

Two other clinical trials have not identified a difference in 
clinical outcomes with the use of ampicillin-sulbactam. An 
open-label trial comparing the outcomes of 47 patients with 
CRAB pneumonia randomized to meropenem/colistin and 
meropenem/ampicillin-sulbactam (total daily dose of 6 g of 
the sulbactam component) for a 14-day course identified sim-
ilar clinical responses in both groups [559] (Question 5.2). 
Another trial randomized 28 patients with CRAB pneumonia 
to colistin monotherapy versus ampicillin-sulbactam mono-
therapy (total daily dose of at least 6 g of the sulbactam compo-
nent) [526]. Neither differences in 28-day mortality nor clinical 
failure reached statistical significance (33% vs 30% and 33% vs 
38%, among patients in the colistin and ampicillin-sulbactam 
arms, respectively). Nephrotoxicity was identified in 33% ver-
sus 15%, comparing the 2 groups. Evaluating the totality of in 
vitro, animal, and clinical data, the panel considers ampicillin- 
sulbactam a preferred option for the treatment of CRAB 
infections. 

The antibiotic sulbactam-durlobactam completed phase 3 
clinical studies but is not currently FDA approved at the end 
date for which data were reviewed for preparation of this docu-
ment (31 December 2022) [564]. The proposed dosing of 
sulbactam-durlobactam provides insights into ampicillin- 
sulbactam dosing for CRAB infections. Preclinical and clinical 
studies have investigated the agent sulbactam-durlobactam 
against CRAB isolates [565–569]. This agent includes a total 
daily dose of 4 g of the sulbactam component, as opposed to 
the total daily dose of 6 to 9 g of sulbactam suggested for 
ampicillin-sulbactam for the treatment of CRAB infections in 
this guidance document. Sulbactam is a substrate for both 
A. baumannii–derived cephalosporinases (class C enzymes) 
and OXA enzymes (class D enzymes) that are produced by 
CRAB [565, 567]. High-dose sulbactam (ie, ampicillin- 
sulbactam) increases the likelihood that sulbactam successfully 
reaches its PBP targets. Durlobactam is a potent inhibitor of  
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class A, C, and D enzymes commonly produced by CRAB [565,  
567], enabling lower doses of sulbactam as sulbactam is more 
likely to successfully reach its PBP targets with the protection 
of durlobactam. Because ampicillin-sulbactam does not have 
the added protection of a durlobactam-like β-lactamase inhib-
itor, the panel suggests use of high-dose ampicillin-sulbactam 
as a primary component of combination therapy for CRAB 
infections. 

Question 5.4: What Is the Role of the Polymyxins for the Treatment of 
Infections Caused by CRAB? 

Suggested Approach 
Polymyxin B can be considered in combination with at least 1 
other agent for the treatment of CRAB infections. 

Rationale 
The polymyxins, including both colistin and polymyxin B, have 
reliable in vitro activity against CRAB isolates, with most of the 
published literature focusing on colistin [517, 518]. The panel 
preferentially suggests polymyxin B when considering 
polymyxin-based regimens, based on its more favorable PK 
profile than colistin [199]. Colistin is favored for CRAB UTIs, 
although admittedly rare, because it converts to its active 
form in the urinary tract. There is no CLSI susceptibility cate-
gory for the polymyxins against A. baumannii; the benefit of 
polymyxins is likely diminished for polymyxin MICs >2 µg/ 
mL [570]. 

The panel advises against polymyxin monotherapy for the 
following reasons: first, concentrations of polymyxins in serum 
achieved with conventional dosing strategies are highly variable 
and may be inadequate for effective bactericidal activity [199]. 
Second, dosages required to treat systemic infections approach 
the threshold for nephrotoxicity, making the therapeutic win-
dow narrow (ie, approximatelyl 2 µg/mL may be required to 
achieve 1-log10 reduction in bacterial growth, but this is also 
the threshold associated with nephrotoxicity) [571]. Third, 
the activity of IV polymyxins in pulmonary epithelial lining flu-
id is suboptimal and generally does not result in adequate bac-
terial killing in the lungs [572–574]. Finally, there are several 
reports of clinical failure and resistance emergence during 
polymyxin monotherapy [570, 575–578]. 

Question 5.5: What Is the Role of Tetracycline Derivatives for the 
Treatment of Infections Caused by CRAB? 

Suggested Approach 
High-dose minocycline or high-dose tigecycline can be con-
sidered in combination with at least 1 other agent for the 
treatment of CRAB infections. The panel prefers minocy-
cline because of the long-standing clinical experience with 
this agent and the availability of CLSI susceptibility inter-
pretive criteria; however, tigecycline is also a reasonable 
option. 

Rationale 
Several tetracycline derivatives have in vitro activity against 
CRAB including minocycline, tigecycline, and eravacycline. 
These agents are capable of escaping common tetracycline- 
resistance mechanisms [579, 580]. The frequency of the emer-
gence of resistance to these agents by CRAB isolates is not well 
defined but occurs through drug efflux stemming from overex-
pression of various RND-type transporters [581, 582]. A gene-
ral concern with tetracycline derivatives is that they achieve 
rapid tissue distribution following administration, resulting 
in limited concentrations in the urine and poor serum concen-
trations [35]. 

There has been considerable clinical experience with the use 
of minocycline since its introduction in the 1960s [583]. It is 
commercially available in both oral and IV formulations. 
International surveillance data suggest minocycline is active 
against approximately 60% to 80% of CRAB isolates [584,  
585]. PD data suggest high-dose minocycline (700 mg loading 
dose followed by 350 mg every 12 hours) may be more effective 
than standard minocycline dosages for the treatment of CRAB 
infections, particularly when used in combination with high- 
dose ampicillin-sulbactam and polymyxin B [517]. Clinical 
data demonstrating the safety and efficacy of minocycline dos-
ages these high are needed before it is recommended in prac-
tice. Minocycline has not been subjected to rigorous trials for 
the treatment of CRAB infections, although case series describ-
ing its use are available [338, 586–589]. Drawing conclusions 
on the effectiveness of minocycline from these observational re-
ports is challenging because they have important limitations 
(eg, small sample sizes, selection bias, inadequate distinctions 
between colonization and infection, heterogeneous sites of in-
fection). Despite the limitations of available data, the panel con-
siders minocycline a reasonable treatment option for CRAB 
infections (dosed at 200 mg twice daily either IV or orally) as 
there are no clear clinical failure signals with its use for treating 
CRAB infections (Table 1). 

Tigecycline is a tetracycline derivative only available as an IV 
formulation. Neither CLSI nor FDA susceptibility interpretive 
criteria are available for tigecycline against CRAB isolates, and 
minocycline MICs cannot be used to predict tigecycline MICs 
as differences in susceptibility percentages across the tetracy-
cline derivatives exist [590]. Several observational studies and 
a meta-analysis of 15 trials suggested that tigecycline mono-
therapy is associated with higher mortality than a variety of 
alternative regimens used for the treatment of pneumonia, 
not exclusively limited to pneumonia caused by CRAB [329,  
544, 591, 592]. Subsequent investigations have suggested that 
when high-dose tigecycline is prescribed (200 mg IV as a single 
dose followed 100 by mg IV every 12 hours) mortality differ-
ences between tigecycline and comparator agents are no longer 
evident [330–332]. If tigecycline is prescribed for the treatment 
of CRAB infections, the panel suggests that high doses be used  
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(Table 2). The panel suggests prescribing minocycline or tige-
cycline in combination with at least 1 additional agent for 
CRAB infections. Both agents are associated with nausea in 
20% to 40% of patients, and this is likely more common with 
higher dosages [593–595]. 

Although eravacycline MICs are generally 2- to 8-fold lower 
than tigecycline MICs against CRAB [590, 596, 597], the clini-
cal relevance of the differences in MIC distributions between 
these agents is unclear because of differences in the PK profile 
of tigecycline and eravacycline. As with tigecycline, no CLSI 
susceptibility interpretive criteria exist for eravacycline. Very 
small numbers of patients with CRAB infections were included 
in clinical trials that investigated the efficacy of eravacycline 
[325, 335]. Limited postmarketing clinical reports describing 
its efficacy for the treatment of CRAB infections are available 
[598, 599]. In an observational study of 93 patients with 
CRAB pneumonia, eravacycline was associated with longer du-
rations of mechanical ventilation (11 vs 7 days) and higher 
30-day mortality (33% vs 15%) compared with commonly ad-
ministered alternative regimens [599]. All 4 patients with 
CRAB bloodstream infections receiving eravacycline died. 
This study did not adjust for potential confounding by indica-
tion. In light of the limited clinical data supporting the use of 
eravacycline, the panel suggests limiting use of eravacycline 
to situations when minocycline and tigecycline are either not 
active or unable to be tolerated. Preclinical data evaluating 
the activity of omadacycline, a tetracycline derivative with 
both an IV and oral formulation, against CRAB suggests re-
duced efficacy relative to other tetracycline derivatives and a 
PK/PD profile that suggests omadacycline has very limited ac-
tivity [63, 339–341]. Clinical data are limited to a small, uncon-
trolled case series [600]. The panel does not suggest the use of 
omadacycline to treat CRAB infections. 

Question 5.6: What Is the Role of Cefiderocol Therapy for the Treatment of 
Infections Caused by CRAB? 

Suggested Approach 
Cefiderocol should be limited to the treatment of CRAB infec-
tions refractory to other antibiotics or in cases where intoler-
ance or resistance to other agents precludes their use. When 
cefiderocol is used to treat CRAB infections, the panel suggests 
prescribing the agent as part of a combination regimen. 

Rationale 
Cefiderocol is the only novel FDA-approved β-lactam agent 
with in vitro activity against CRAB isolates. International sur-
veillance studies indicate that approximately 95% of CRAB iso-
lates are susceptible to cefiderocol using the CLSI susceptibility 
criteria ≤4 µg/mL (Table 2) [219, 272, 426, 427, 601, 602]. 
Determining CRAB susceptibility to cefiderocol is challenging, 
in part because of variable iron concentrations in media. 
Moreover, MIC results are not always reproducible across 

methods, with heteroresistance often observed [603, 604]. 
The percent free time above the MIC of cefiderocol required 
for a 1-log10 reduction in A. baumannii was higher than for 
Enterobacterales, P. aeruginosa, or S. maltophilia in a murine 
lung infection model [601]. 

A clinical trial including 54 patients with CRAB infections 
identified mortality at the end of study to be 49% versus 18% 
in the cefiderocol versus alternative therapy arms (largely com-
posed of polymyxin-based regimens), respectively [204]. Poor 
outcomes with cefiderocol were observed in patients with 
pneumonia and bloodstream infections. A second randomized 
trial specifically evaluating patients with pneumonia random-
ized to cefiderocol or high-dose extended-infusion meropenem 
found no difference in clinical outcomes between the 2 treat-
ment regimens, including among 36 patients with CRAB pneu-
monia, suggesting outcomes were similar between cefiderocol 
and a relatively inactive agent [605]. Because of the heterogene-
ity of regimens used in the alternative arms in the first trial and 
the relatively small numbers of patients with CRAB when com-
bining both trials, contextualizing the results is challenging 
[218]. In a subsequent observational study, 30-day mortality 
was 34% versus 56% for 124 patients with CRAB infections re-
ceiving cefiderocol versus colistin-based regimens, respectively 
[606]. Recurrent CRAB infection, however, was more likely in 
the cefiderocol arm (17% vs 7%). Among the 8 patients in the 
cefiderocol group who experienced a recurrent CRAB infec-
tion, 50% had subsequent isolates exhibiting resistance to 
cefiderocol. 

Combining the results of preclinical and clinical data, the 
panel suggests that if cefiderocol is prescribed for the treatment 
of CRAB infections, it should be used with caution and as a 
component of combination therapy, to increase the likelihood 
that at least 1 effective agent is included as part of the treatment 
regimen. The panel also suggests limiting consideration of ce-
fiderocol for CRAB infections after other regimens have been 
exhausted. 

Question 5.7: What Is the Role of Extended-Infusion Meropenem or 
Imipenem-Cilastatin for the Treatment of Infections Caused by CRAB? 

Suggested Approach 
High-dose, extended-infusion meropenem or imipenem- 
cilastatin are not suggested for the treatment of CRAB infections. 

Rationale 
In vitro data suggest that triple-combination therapies consisting 
of (1) meropenem, ampicillin-sulbactam, and minocycline or (2) 
meropenem, ampicillin-sulbactam, and polymyxin B may lead to 
eradication of CRAB [516–518]. As described in Question 5.2, 2 
large trials evaluated the role of colistin monotherapy versus co-
listin plus meropenem and neither trial demonstrated a benefit 
with the combination of colistin plus meropenem for the treat-
ment of CRAB infections [510, 528]. A secondary analysis of  
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the first trial investigated the association between the presence of 
in vitro synergy between colistin-meropenem and clinical out-
comes in patients who received the combination of colistin 
plus meropenem [510, 558]. Improved clinical outcomes were 
not observed when in vitro synergy was present. 

Imipenem-cilastatin may retain activity against some 
meropenem-resistant isolates [607–609]; however, by defini-
tion, CRAB isolates have meropenem and/or imipenem MICs 
≥8 µg/mL and carbapenem MICs are almost always signifi-
cantly higher than 8 µg/mL [510, 558]. With highly elevated 
MICs, it appears unlikely that either meropenem or imipenem- 
cilastatin would offer any incremental benefit when used in 
combination with other CRAB regimens. Because high-dose 
ampicillin-sulbactam is being suggested as a core component 
of combination treatment for CRAB infections, the panel advis-
es against the use of meropenem or imipenem-cilastatin be-
cause they may lead to additive β-lactam toxicity without 
clinical benefit. 

Question 5.8: What Is the Role of the Rifamycins for the Treatment of 
Infections Caused by CRAB? 

Suggested Approach 
Rifabutin or other rifamycins are not suggested for the treat-
ment of CRAB infections. 

Rationale 
The rifamycin class of antibiotics includes agents such as rifam-
pin, rifabutin, and rifapentine that inhibit bacterial RNA poly-
merase [610]. Data indicate that rifabutin has potent activity 
against A. baumannii in both in vitro and animal models, 
which is significantly greater than that exhibited by rifampin 
[611–613]. Synergy between rifabutin and the polymyxins has 
been proposed because of the latter’s ability to disrupt bacterial 
membrane permeability, which may facilitate intracellular pen-
etration of rifamycin and subsequent inhibition of bacterial 
protein synthesis [612]. 

Three clinical trials compared the clinical outcomes of 
CRAB-infected patients receiving colistin alone versus colis-
tin in combination with rifampin (Question 5.2) [512, 513,  
515]. A trial including 210 intensive care unit patients with 
invasive CRAB infections compared the outcomes of patients 
receiving colistin alone versus colistin in combination with 
rifampin and found 43% mortality in both study arms 
[512]. A second trial including 43 patients with CRAB pneu-
monia also compared colistin monotherapy and colistin in 
combination with rifampin [513] and identified in hospital 
mortality to be 73% in the colistin group and 62% in the 
colistin-rifampin group, not achieving statistical significance. 
A third study randomized 9 patients with colistin-resistant A. 
baumannii and found no difference in clinical response be-
tween the colistin (80%) and colistin plus rifampin arms 
(67%) [515]. 

Admittedly, there are limitations to all these trials including 
suboptimal dosing of colistin and small sample sizes. It is un-
known if a clinical benefit would have been observed if rifabu-
tin had been used in place of rifampin [614]. In light of the 
known toxicities and drug interactions associated with the rifa-
mycins [615] and the absence of a benefit observed in available 
clinical trials, the panel does not favor the use of rifabutin as a 
component of CRAB therapy. 

Question 5.9: What Is the Role of Nebulized Antibiotics for the Treatment of 
Respiratory Infections Caused by CRAB? 

Suggested Approach 
Nebulized antibiotics are not suggested for the treatment of re-
spiratory infections caused by CRAB. 

Rationale 
There have been conflicting findings regarding the clinical ef-
fectiveness of nebulized antibiotics for the treatment of gram- 
negative pneumonia in observational studies [459–486]. At 
least 3 trials evaluated the outcomes of patients with gram- 
negative ventilator-associated pneumonia comparing nebu-
lized antibiotics versus placebo. All 3 trials allowed for the 
use of systemic antibiotics, at the discretion of the treating cli-
nician. In brief, 1 trial compared the outcomes of 100 adults 
with pneumonia (65% caused by A. baumannii) treated with 
nebulized colistin versus placebo [487]; a second trial com-
pared the outcomes of 142 adults with pneumonia (20% caused 
by A. baumannii) treated with nebulized amikacin/fosfomycin 
versus placebo [488]; and the third trial compared the out-
comes of 508 adults with pneumonia (29% caused by A. bau-
mannii) treated with nebulized amikacin versus placebo 
[489]. None of the 3 clinical trials demonstrated improved clin-
ical outcomes or a survival benefit with the use of nebulized an-
tibiotics compared with placebo for the treatment of 
ventilator-associated pneumonia, including in subgroup analy-
ses of drug-resistant pathogens [487–489]. 

A meta-analysis of 13 trials including 1733 adults with 
ventilator-associated pneumonia indicated that the addition of 
nebulized antibiotics was associated with at least partial resolu-
tion of clinical symptoms of infection compared with the control 
group; however, there was significant heterogeneity among the 
pathogens involved and the definition of clinical response across 
studies [490]. No survival benefit, reduction in intensive care 
unit lengths of stay, or reduction in ventilator days was observed 
in patients receiving nebulized antibiotics [490]. 

Reasons for the lack of clinical benefit in these trials are un-
clear. In a PK/PD modeling study, aerosolized delivery of the 
prodrug of colistin to critically ill patients achieved high active 
drug levels in epithelial lining fluid of the lungs [491]. However, 
it is likely that nebulized antibiotics do not achieve sufficient 
penetration and/or distribution throughout lung tissue to exert 
significant bactericidal activity [492], likely in part to the use of  
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parenteral formulations not specifically designed for inhalation 
in suboptimal delivery devices such as jet nebulizers [493, 494]. 
Professional societies have expressed conflicting views regard-
ing the role of nebulized antibiotics as adjunctive therapy to IV 
antibiotics [495–497]. The panel suggests against the use of 
nebulized antibiotics as adjunctive therapy for CRAB pneumo-
nia because of the lack of benefit observed in clinical trials, con-
cerns regarding unequal distribution in infected lungs, and 
concerns for respiratory complications such as bronchocon-
striction patients receiving aerosolized antibiotics [498]. 

SECTION 6: STENOTROPHOMONAS MALTOPHILIA 

Stenotrophomonas maltophilia is an aerobic, glucose nonfer-
menting, gram-negative bacillus that is ubiquitous in water en-
vironments [616]. The organism has a long history of changing 
nomenclatures and a complicated phylogeny [617–619]. 
Although generally believed to be less pathogenic than many 
other nosocomial organisms, S. maltophilia produces biofilm 
and virulence factors that can enable colonization or infection 
in vulnerable hosts, such as those with underlying lung disease 
and hematological malignancies [620]. 

S. maltophilia infections pose management challenges very 
similar to those of CRAB infections. First, although S. malto-
philia has the potential to cause serious disease, it is often unclear 
if S. maltophilia represents a colonizing organism or a true path-
ogen, particularly in patients with underlying pulmonary condi-
tions such as cystic fibrosis or ventilator dependency [621–625]. 
S. maltophilia is often recovered as a component of a polymicro-
bial infection, further challenging the need for targeted S. malto-
philia therapy [617, 626]. Importantly, S. maltophilia can be a 
true pathogen that causes considerable morbidity and mortality 
in the hematologic malignancy population primarily because of 
hemorrhagic pneumonia or bacteremia [627–633]. 

Second, treatment selection is hampered by the impressive 
number of antimicrobial resistance genes and gene mutations 
carried by S. maltophilia isolates [617, 619, 634]. An L1 metallo 
β-lactamase and L2 serine β-lactamase render most conven-
tional β-lactams ineffective against S. maltophilia. L1 hydrolyz-
es penicillins, cephalosporins, and carbapenems, but not 
aztreonam. L2 has extended cephalosporin activity as well as 
the ability to hydrolyze aztreonam [617]. S. maltophilia exhibits 
intrinsic resistance to aminoglycosides via chromosomal ami-
noglycoside acetyl transferase enzymes [635]. Furthermore, 
S. maltophilia can accumulate multidrug efflux pumps that re-
duce the activity of TMP-SMX, tetracyclines, and fluoroquino-
lones, and chromosomal Smqnr genes that further reduce the 
effectiveness of fluoroquinolones [636–639]. 

Third, a “standard of care” antibiotic regimen for S. malto-
philia infections against which to estimate the effectiveness of 
various treatment regimens is not evident. Robust comparative 
effectiveness studies between commonly used agents for 

S. maltophilia are lacking. Data to prioritize agents with activity 
against S. maltophilia and to determine the additive benefit of 
commonly used combination therapy regimens remain 
incomplete. 

Last, S. maltophilia AST determination is problematic. The 
CLSI has established susceptibility interpretive criteria for 
seven agents against S. maltophilia: TMP-SMX, ticarcillin- 
clavulanate, ceftazidime, cefiderocol, levofloxacin, minocycline, 
and chloramphenicol. Ticarcillin-clavulanate manufacturing 
has been discontinued and chloramphenicol is rarely used 
in the United States because of significant toxicities [640], 
leaving 5 agents for which interpretable antibiotic MIC data 
can be provided to clinicians. Confidence in MIC interpretive 
criteria is undermined by concerns about the reproducibility 
of ceftazidime and levofloxacin MICs using testing methods 
commonly used in clinical laboratories [641, 642], the limited 
PK/PD data used to inform breakpoints for most agents, 
and insufficient data to identify correlations between MICs 
and clinical outcomes. 

There are no CLSI susceptibility criteria established for the 
polymyxins [16, 643]. Incomplete S. maltophilia growth inhibi-
tion often occurs in polymyxin wells, suggestive of heteroresist-
ance. Challenges exist in both the accuracy and reproducibility 
of polymyxin MICs [644, 645]. The panel does not suggest 
polymyxins for the treatment of S. maltophilia infections. 
This guidance document focuses on the treatment of moderate- 
severe S. maltophilia infections. 

Question 6.1: What Is a General Approach for the Treatment of Infections 
Caused by S. maltophilia? 

Suggested Approach 
Any of 2 approaches are suggested for the treatment of 
S. maltophilia infections: (1) the use of 2 of the following 
agents: TMP-SMX, minocycline/tigecycline, cefiderocol, or lev-
ofloxacin or (2) the combination of ceftazidime-avibactam and 
aztreonam, when significant clinical instability is evident or in-
tolerance to or inactivity of other agents is identified. 

Rationale 
In situations of S. maltophilia infection, either of 2 approaches 
are suggested. First, combination therapy with at least 2 active 
agents (ie, TMP-SMX, minocycline/tigecycline, cefiderocol, or 
levofloxacin) is suggested at least until clinical improvement 
is observed, primarily because of the limited clinical data 
supporting any individual agent (Questions 6.2 to 6.5). 
Alternatively, the combination of ceftazidime-avibactam and 
aztreonam can be considered in situations of significant clinical 
instability, when clinical failure with other agents occurs, or if 
there is intolerance to other agents (Question 6.6). 

In vitro data are conflicting, but several investigations sug-
gest synergy between agents with activity against S. maltophilia 
including minocycline, cefiderocol, and fluoroquinolones  
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[646–649]. Clinical outcomes data comparing monotherapy 
and combination therapy are similarly conflicting and limited 
to observational studies plagued with concerns such as selection 
bias, small sample sizes, and significant heterogeneity in patient, 
microbial, and treatment characteristics [650–652]. Because this 
document focuses on moderate-severe disease resulting from S. 
maltophilia, the panel favors combination therapy to increase 
the likelihood that at least 1 active agent is being administered. 

Question 6.2: What Is the Role of Trimethoprim-Sulfamethoxazole for the 
Treatment of Infections Caused by S. maltophilia? 

Suggested Approach 
TMP-SMX as a component of combination therapy, at least un-
til clinical improvement is observed, is a preferred therapy for 
the treatment of S. maltophilia infections. 

Rationale 
TMP-SMX has been the historic first-line therapy for S. malto-
philia infections. Surveillance studies have consistently shown 
that TMP-SMX has more than a 90% likelihood of activity 
against S. maltophilia [653, 654], although there is an in-
creasing recognition of S. maltophilia isolates resistant to 
TMP-SMX [648, 653, 655, 656]. Furthermore, there is exten-
sive clinical experience with the use of TMP-SMX to treat S. 
maltophilia infections. 

Despite the frequency with which TMP-SMX is prescribed 
for S. maltophilia infections, rigorous clinical data investigating 
its effectiveness are lacking. An observational study of 1581 pa-
tients with S. maltophilia identified in respiratory or blood cul-
tures and treated with TMP-SMX or levofloxacin monotherapy 
was undertaken using an administrative database [657]. This 
work suggested that levofloxacin may be protective against 
mortality in patients with S. maltophilia recovered from respi-
ratory cultures and marginally protective against mortality re-
gardless of the culture site. There are significant limitations to 
this study making its findings challenging to interpret (eg, wide 
study interval [2005–2017] during which many changes in clin-
ical practice likely occurred, inability to distinguish coloniza-
tion and infection, inability to adjust for source control, 
incomplete AST data, inclusion of polymicrobial infections). 
Given these limitations, the applicability to guide clinical prac-
tice is unclear. 

Before the publication of this work, the largest study evalu-
ating TMP-SMX treatment was a case series of 91 patients 
with S. maltophilia bloodstream infections, in whom mortality 
was 25% within 14 days [652]. The small number of patients in 
the study who received an agent other than TMP-SMX preclud-
ed a comparative effectiveness evaluation. Several relatively 
small observational studies comparing TMP-SMX and other 
agents (namely tetracycline derivatives or fluoroquinolones) 
have been undertaken and generally demonstrated similar out-
comes between treatment agents [658–664]; these studies have 

a number of notable limitations as further described in 
Question 6.3 and Question 6.5. Moreover, there is no estab-
lished PK/PD index for efficacy or toxicity to inform optimal 
TMP-SMX dosing for S. maltophilia infections, and a PD mod-
el suggests that TMP-SMX achieves limited activity even 
against susceptible S. maltophilia [646, 665]. 

Given the toxicity of TMP-SMX (eg, nausea/vomiting, 
hyperkalemia, fluid overload, possible nephrotoxicity), particu-
larly at higher doses, no established dose-response relationship 
[666], the absence of clinical evidence supporting any particu-
lar dose, and evidence that TMP dosing of >15 mg/kg/day may 
lead to serum sulfamethoxazole levels higher than necessary 
[667], the panel suggests a dose range of 8 to 12 mg/kg 
(trimethoprim component) of TMP/SMX for patients with 
S. maltophilia infections (Table 1). 

Acknowledging the paucity of clinical data supporting this 
suggestion, the panel still considers TMP-SMX a preferred 
treatment option for S. maltophilia infections, given the long- 
standing experience with its use and no clear clinical failure sig-
nals. As described in Question 6.1, when prescribing TMP-SMX 
for S. maltophilia infections, the addition of a second agent (eg, 
minocycline/tigecycline, cefiderocol, levofloxacin), at least until 
clinical improvement is observed, is suggested. 

Question 6.3: What Is the Role of Tetracycline Derivatives for the 
Treatment of Infections Caused by S. maltophilia? 

Suggested Approach 
High-dose minocycline (ie, 200 mg IV/orally every 12 hours) as 
a component of combination therapy, at least until clinical im-
provement is observed, is a preferred therapy for the treatment 
of S. maltophilia infections. Because of the slightly more favor-
able in vitro data with minocycline, availability of CLSI break-
points, oral formulation, and likely improved tolerability of 
minocycline relative to tigecycline, the panel favors minocy-
cline over tigecycline, although tigecycline is also a reasonable 
treatment option for S. maltophilia infections. 

Rationale 
Tetracycline derivatives generally have low MICs when tested 
against S. maltophilia [649, 668–671]. Surveillance studies re-
port that minocycline and tigecycline have activity against ap-
proximately 70% to 90% of S. maltophilia isolates, with a lower 
(and hence, more favorable) MIC90 generally observed for min-
ocycline [649, 668–671]. Among tetracycline derivatives, CLSI 
susceptibility criteria are only available for minocycline [16]. 
Greater than 90% target attainment is achieved with minocy-
cline dosages of 100 mg IV every 12 hours compared with ap-
proximately 75% target attainment with tigecycline dosed at 
100 mg IV every 12 hours [669]. Both minocycline and tigecy-
cline have extensive penetration into lung tissue [672–675]. 

Clinical outcomes data investigating the role of tetracycline 
derivatives for the treatment of S. maltophilia infections are  
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limited. An observational study comparing the clinical out-
comes of 45 patients with S. maltophilia infections in a variety 
of body sites demonstrated no difference in outcomes for pa-
tients treated with TMP-SMX or minocycline [660]. Another 
observational study evaluating 119 patients with S. maltophilia 
infections who received minocycline reported clinical success 
in approximately 80% of patients [676]; there was no compar-
ator arm. An observational study including 45 patients with 
S. maltophilia infections treated with TMP-SMX or tigecycline 
did not find differences in clinical outcomes [661]. A fourth ob-
servational study compared 46 patients receiving standard- 
dose tigecycline and 36 patients receiving fluoroquinolones 
(levofloxacin or moxifloxacin) [677]. Outcomes were as follows 
comparing the tigecycline and fluoroquinolone groups: clinical 
cure 33% versus 64%, 28-day mortality 48% versus 28%. There 
are several limitations to these studies including selection bias, 
small sample sizes, heterogeneity in host and microbial data, 
and the use of additional active agents. 

These limitations notwithstanding, there are no clear clinical 
failure signals indicating that high-dose minocycline or high- 
dose tigecycline are not reasonable treatment options for 
S. maltophilia infections. Because of the slightly more favorable 
in vitro data with minocycline, more favorable PK/PD data, 
oral formulation, and likely improved tolerability of minocy-
cline relative to tigecycline, the panel favors minocycline. 
Extrapolating largely from treatment data for infections by oth-
er drug-resistant pathogens, high-dose regimens are recom-
mended when prescribing minocycline or tigecycline for 
S. maltophilia infections [586, 678, 679] (Table 1). At higher 
dosages (ie, 200 mg twice daily) both IV and oral formulations 
of minocycline are expected to provide adequate drug levels. 

In vitro and in vivo data on the role of eravacycline against 
S. maltophilia are scarce. Omadacycline, a tetracycline deriva-
tive with oral and IV formulations, has limited in vitro activity 
against S. maltophilia relative to other tetracycline derivatives 
[668]. The panel does not suggest the use of eravacycline or 
omadacycline for the treatment of S. maltophilia infections. 

A general concern with tetracycline derivatives is that they 
achieve rapid tissue distribution following administration, result-
ing in limited concentrations in the urine and poor serum concen-
trations [35]. Therefore, they are not suggested for S. maltophilia 
UTIs. They are only advised as a component of combination ther-
apy for the treatment of S. maltophilia bloodstream infections. 
Nausea and emesis are reported in as many as 20% to 40% of pa-
tients receiving minocycline or tigecycline [593–595]. 

Question 6.4: What Is the Role of Cefiderocol for the Treatment of 
Infections Caused by S. maltophilia? 

Suggested Approach 
Cefiderocol as a component of combination therapy, at least 
until clinical improvement is observed, is a preferred therapy 
for the treatment of S. maltophilia infections. 

Rationale 
Surveillance studies indicate susceptibility of S. maltophilia iso-
lates approaches 100%, even against isolates resistant to other 
commonly prescribed agents [424, 426, 648, 680, 681], with 
the caveat that investigations were generally conducted before 
widespread clinical use of the drug. The likelihood of adequate 
target attainment of cefiderocol is high based on in vitro mod-
eling data, including for pulmonary and bloodstream infections 
[682]. Neutropenic thigh and lung murine infection models 
demonstrate potent activity of cefiderocol and indicate that in 
vivo efficacy against S. maltophilia appears to correlate with 
in vitro efficacy under iron-depleted conditions, using simulat-
ed human dosing [601, 683–685]. 

A clinical trial evaluating the role of cefiderocol for 
carbapenem-resistant infections included 5 patients with 
S. maltophilia infections [204, 686]. All 5 patients were assigned 
to the cefiderocol arm, precluding comparisons between treat-
ment regimens. Four of 5 patients died. If limiting the analysis 
to the 3 patients with S. maltophilia infections without A. bau-
mannii coinfection, 2 of 3 patients died. Other clinical data 
evaluating the role of cefiderocol for the treatment of S. malto-
philia infections are limited to case reports [687–689]. Despite 
the limited availability of clinical data, in vitro data and animal 
models are encouraging for the use of cefiderocol in treating 
S. maltophilia infections. Data are not available to guide the 
decision to use cefiderocol as a component of combination 
therapy or as monotherapy. The panel suggests cefiderocol be 
considered as a component of combination therapy at least un-
til clinical improvement is observed. 

Question 6.5: What is the Role of Fluoroquinolones for the Treatment of 
Infections Caused by S. maltophilia? 

Suggested Approach 
Levofloxacin is suggested only as a component of combination 
therapy for the treatment of S. maltophilia infections. 
Transitioning to levofloxacin monotherapy for S. maltophilia 
infections is not advised. 

Rationale 
S. maltophilia isolates frequently harbor Smqnr resistance de-
terminants that interfere with fluoroquinolone binding to gyr-
ase and topoisomerase, leading to increased fluoroquinolone 
MICs [619, 636]. Fluoroquinolone MICs may increase further 
as a result of overexpression of multidrug-resistant efflux 
pumps [653, 690–692]. Baseline susceptibility percentages of 
S. maltophilia to levofloxacin vary from approximately 30% 
to 80% in surveillance studies [648, 649, 671, 693]. Several stud-
ies have shown that S. maltophilia isolates that test susceptible 
to levofloxacin can develop elevated levofloxacin MICs during 
therapy [659, 662, 664, 694]. CLSI susceptibility criteria exist 
for levofloxacin against S. maltophilia, but not for ciprofloxacin 
or moxifloxacin [16]. In January 2023, the CLSI elected to  
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include a comment suggesting levofloxacin should be used only 
as a component of combination therapy for the treatment of 
S. maltophilia infections [16]. 

Time-kill curves evaluating ciprofloxacin, levofloxacin, and 
moxifloxacin monotherapy generally indicate that these agents 
are inadequate at sustained inhibition of S. maltophilia growth 
[669, 695–698], but suggest that levofloxacin and moxifloxacin 
may have sufficient activity as components of combination 
therapy [648, 649]. PK/PD modeling data suggest that fluoro-
quinolone monotherapy may be insufficient to achieve appro-
priate target attainment for S. maltophilia infections, even 
when administered at high dosages [669]. Levofloxacin and 
moxifloxacin were both associated with improved survival 
compared to placebo in a mouse model of hemorrhagic S. mal-
tophilia pneumonia [699]. Neutropenic mouse models suggest 
that levofloxacin may be most effective against S. maltophilia 
isolates with MICs of ≤1 µg/mL [700]. 

Fluoroquinolone data for the treatment of S. maltophilia 
clinical infections mostly focus on levofloxacin. A meta- 
analysis including 663 patients from 14 observational studies 
compared mortality between fluoroquinolones and TMP- 
SMX, with approximately 50% of patients receiving fluoroquin-
olones (including ciprofloxacin [34%] and levofloxacin [57%]) 
and 50% receiving TMP-SMX [658]. When evaluated sepa-
rately, there was no difference in mortality between ciproflox-
acin or levofloxacin in combination with TMP-SMX. However, 
when pooling the fluoroquinolones, they appeared to be mar-
ginally significant in protecting against mortality compared 
with TMP-SMX, with mortality reported in 26% versus 33% 
of patients, respectively. When limiting the analysis to patients 
with S. maltophilia bloodstream infections, in which concerns 
related to distinguishing colonization and infection are less 
problematic, a benefit with fluoroquinolone use was not evi-
dent. An observational study comparing 31 patients receiving 
levofloxacin and 45 patients receiving TMP-SMX published af-
ter the previously mentioned meta-analysis found comparable 
outcomes in both groups [659]. Similar to the meta-analysis, 
interpretation of the results is challenging since, among other 
limitations, all sites of infection were included without clear 
definitions distinguishing between colonization and infection. 
Another observational study compared 46 patients receiving 
standard-dose tigecycline and 36 patients receiving fluoroquin-
olones (levofloxacin or moxifloxacin) and found poorer out-
comes in the standard-dose tigecycline arm [677]. There are a 
number of limitations to these studies including selection 
bias, small sample sizes, heterogeneity in host and microbial 
data, and the use of additional active agents. 

As discussed in Question 6.2, an observational study of 1581 
patients with S. maltophilia identified in respiratory or blood 
cultures and treated with TMP-SMX or levofloxacin was un-
dertaken using an administrative database [657]. Although 
this work suggested that levofloxacin may be protective against 

mortality in patients with S. maltophilia recovered from respi-
ratory cultures and marginally protective against mortality re-
gardless of the culture site, there are significant limitations to 
this study making its findings challenging to interpret. 

Because of suboptimal results with fluoroquinolone 
monotherapy in in vitro studies, known mechanisms of re-
sistance of S. maltophilia to fluoroquinolones, the emer-
gence of resistance during therapy, and inherent biases in 
the observational data, the panel suggests levofloxacin only 
be used as a component of combination therapy when pre-
scribed for the treatment of S. maltophilia infections. 
Because of the lack of susceptibility criteria for ciprofloxacin 
and moxifloxacin, the panel suggests preferentially adminis-
tering levofloxacin among the fluoroquinolones. Adverse 
events related to fluoroquinolone use and the potential for 
the emergence of resistant S. maltophilia isolates during lev-
ofloxacin therapy should be considered when prescribing 
this agent [701]. 

Question 6.6: What Is the Role of Ceftazidime-avibactam and Aztreonam for 
the Treatment of Infections Caused by S. maltophilia? 

Suggested Approach 
The combination of ceftazidime-avibactam and aztreonam is 
suggested for S. maltophilia infections when critical illness 
is evident or intolerance or inactivity of other agents is 
observed. 

Rationale 
The combination of ceftazidime-avibactam and aztreonam can 
be used to overcome the activity of both the L1 and L2 
β-lactamases intrinsic to S. maltophilia [619, 702–707]. The 
L1 metallo-β-lactamase hydrolyzes ceftazidime but not aztreo-
nam. The L2 serine β-lactamase hydrolyzes ceftazidime and 
aztreonam but is inactivated by avibactam. Therefore, the 
combination of ceftazidime-avibactam and aztreonam enables 
aztreonam to bypass inactivation and successfully reach its tar-
get PBPs of S. maltophilia. Despite limited available clinical 
data with this combination for the treatment of S. maltophilia 
infections [704, 708, 709], the combination of ceftazidime- 
avibactam and aztreonam [266, 268] is a reasonable treatment 
option for moderate to severe infections, such as pneumonia 
or bloodstream infections in the hematologic malignancy pop-
ulation, as well as in situations in which intolerance or resis-
tance to other agents precludes their use. Strategies for 
administering the combination of ceftazidime-avibactam and 
aztreonam are reviewed in Table 1 and Supplementary 
Material [266–268]. Patients should be monitored closely for 
elevations in liver enzymes [269]. Although several groups 
have described methods used to test susceptibility with this 
combination of agents [258–265], the CLSI does not currently 
endorse a specific approach to test in vitro activity with this 
combination [16].  
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Question 6.7: What Is the Role of Ceftazidime for the Treatment of 
Infections Caused by S. maltophilia? 

Suggested Approach 
Ceftazidime is not a suggested treatment option for S. malto-
philia infections resulting from the presence of β-lactamase 
genes intrinsic to S. maltophilia that are expected to render cef-
tazidime inactive. 

Rationale 
The panel does not suggest prescribing ceftazidime for the 
treatment of S. maltophilia infections because intrinsic L1 
and L2 β-lactamases are expected to render it ineffective. 
Almost 30% to 40% of S. maltophilia isolates test susceptible 
to ceftazidime using CLSI interpretive criteria; however, be-
cause of insufficient data to reevaluate ceftazidime breakpoints, 
“susceptibility” is likely not reflective of clinical success [671,  
693]. Ceftazidime MICs against S. maltophilia may be inaccu-
rate and nonreproducible using AST methods commonly em-
ployed by clinical microbiology laboratories, potentially 
related to the presence of inactivating β-lactamases [641,  
642]. Avibactam (ie, ceftazidime-avibactam) is not likely to ex-
pand the activity of ceftazidime against S. maltophilia, in the 
absence of aztreonam. In vitro models suggest ceftazidime is 
unable to substantively prevent S. maltophilia growth [649]. 
Comparative effectiveness studies evaluating the role of ceftazi-
dime against S. maltophilia infections are virtually nonexistent 
[710]. Local clinical microbiology laboratories and antibiotic 
stewardship teams are encouraged to convey the likely ineffec-
tiveness of ceftazidime against S. maltophilia to clinicians, even 
when it tests susceptible. 

CONCLUSIONS 

The field of AMR is dynamic and rapidly evolving, and the 
treatment of antimicrobial-resistant infections will continue 
to challenge clinicians. As newer antibiotics against resistant 
pathogens are incorporated into clinical practice, we are learn-
ing more about their effectiveness and propensity to resistance. 
This treatment guidance focusing on ESBL-E, AmpC-E, CRE, 
and DTR-P. aeruginosa, CRAB, and S. maltophilia will be up-
dated approximately annually and is available at: https:// 
www.idsociety.org/practice-guideline/amr-guidance/. 

Supplementary Data 
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding 
author. 
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